Index Construction

David Kauchak
cs160
Fall 2009

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture4-indexconstruction.ppt

Administrative

= Homework 2
= Issues with assignment 17

= Assignment handin procedure on course web
page

Google trends: “Michael Jackson”

Scale is based on the average worldwide traffic of “n | in all years. Learn more

1.00

~16.6 Million queries for “Michael Jackson” in Aug.

https://adwords.google.com/select/KeywordToolExternal

Google trends: “fires”

Searches Websites . United States

Scale is based on the average traffic of fires from United States in all years. Learn more

fires 1.00
| B|)
30.0
20.0
> [p]
10.0 | D)
I
() A A v,
e n et D™ S| A P e Ay -y —— —t \ B Sl e r—_ .\L."‘ o -

€S

| quer

Ica

cycl

|

Google trends

@©
o o
o T3
o n..m
o
L r T ©
&N | &
© o
- \u)
o T 3
& &

u
Q
o

&

u
l |

-

o

1.00

o |

~
=
= - -
o 3
o -
Y] --
o
-] —~ -1

Hardware basics

= Many design decisions in information retrieval are
based on the characteristics of hardware

cpu

main memory

disk

Hardware basics

? = fast, particularly
' relative to hard-drive
access times

main memory = gigahertz processors
= multi-core

= 64-Dbit for larger
workable address
space

cpu

disk

Hardware basics

s GBs to 10s of GBs
for servers

5 = Main memory buses
main memory . run at hundreds of
megahertz

s ~random access

cpu

disk

Hardware basics

s No data is transferred from
disk while the disk head is
being positioned

= [ransferring one large
chunk of data from disk to
memory is faster than
transferring many small
chunks

= Disk I/O is block-based:
Reading and writing of
entire blocks (as opposed to
smaller chunks).

s Block sizes: 8KB to 256 KB.

cpu

main memory

disk 7

Hardware basics
-

= 100s of GBs to TBs
= average seek time 5
ms

YD (Sliietsy = transfer time per byte
0.02 us

cpu

disk

RCV1: Our corpus for this lecture

= As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection

= This is one year of Reuters newswire (part of 1995 and
1996)

= Still only a moderately sized data set

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Articke Print This Article | Reprints
lext
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on
Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Reuters RCV1 statistics

statistic value
= documents 300K
= avg. # tokens per doc 200
= terms 400K

= non-positional postings 100M

Index construction

documents index

e gl = Documents are tokenized/

I =E= normalized

o | . .
= Postings lists are sorted by

— word 1 doclD

o s >
2 | word 2

OcCc/] /. [

s
o o o
M (Do
s

!

How can we do this?

word n »

Index construction:

collecting documentiDs

Doc 1

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

Doc 2

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term
|

did
enact
julius
caesar
|

was
killed
i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

O
0
0
3+

NINNDNMNMNMDMNMNMNNDNNMNMMMNMNN_R,R 22 2 QA aaaaadaaadaaaaa

running time?
O(tokens)

memory?
O(1)

now what?

Index construction:
sort dictionary

Term Doc # Term Doc #
I 1 ambitious 2
did 1 be 2
enact 1 brutus 1 . i
julius 1 brutus 2 running time?
caesar 1 capitol 1
l 1 caesar 1
was 1 caesar 2
- caesar 2 (I)
killed ! sort based on terms g ; (T log T
the 1 enact 1
capitol 1 hath 1
brutus 1 I 1 memao ry?
killed 1 | 1
me 1 i’ 1
so 2 it 2 @ (T)
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 so 2 and then?
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

Index construction:
create postings list

Term
ambitious
be

Doc #

brutus
brutus

capitol

caesar
caesar
caesar

did
enact
hath
|

|

i

it
julius
killed
killed
let
me
noble
so
the
the
told
you
was
was
with

create postings lists
from identical entries

)

running time?

O(tokens)

> —»
word 1

> —»
word 2
word n » >

What does this
imply about the
sorting algorithm?

Scaling index construction
-

= In-memory index construction does not scale

= What is the major limiting step?

= both the collecting document IDs and creating
posting lists require little memory since it's just a
linear traversal of the data

= sorting is memory intensive! Even in-place sorting
algorithms still require O(n) memory

= For RCV1, we could do still do it in memory

= What about larger data sets?
= On-disk sorting

On-disk sorting

= What are our options?

= Literally, sort on-disk: keep all data on disk. WWhen we need to
access entries, access entries

= Random access on disk is slow......

= Break up list into chunks. Sort chunks, then merge chunks (e.g.
unix “merge” function)

sort merge

- chunks - chunks
]]
o I = I =
]]
]]

split

On-disk sorting

= Can do this while processing

= \WWhen we reach a particular size, start the sorting
process

On-disk sorting

= We can pick the chunk size so that we can sort
the chunk in memory

= Generally, pick as large a chunk as possible
while still being able to sort in memory

sort
chunks

=

On-disk sorting

= How can we do this?

postings
to be merged
merge
C h un I(S brutus d3 brutus d2
caesar d4 caesar dl
noble d3 julius d1
with d4 killed d2

= \

brutus
brutus
caesar
caesar
julius
killed
noble
with

d2
d3
dl
d4
dl
d2
d3
d4

/

|< disk

—

merged
postings

Binary merges
|
= Can do binary merges, with a merge tree
= For n chunks, how many levels will there be?
= log(n)

n-way merge
-

= More efficient to do an n-way merge, where you are
reading from all blocks simultaneously

= Providing you read decent-sized chunks of each
block into memory, you're not killed by disk seeks

= Only one level of merges!
= Isitlinear?

Another approach: SPIMI

= Sorting can still be expensive

= Is there any way to do the indexing without
sorting?

= Accumulate posting lists as they occur

= When size gets too big, start a new chunk

= Merge chunks at the end

Another approach

Doc 1

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

)

/

did
enact
Julius
caesar
was
killed
I

the
capitol
brutus
me

—_ = =] =] = —_ = =] =] =] =

Another approach

Doc 2

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

)

/

did
enact
Julius
caesar
was
killed
i

the
capitol
brutus
me

SO

let

it

be
with
noble

SH ESH ENE SR BV T e —_ = =] =] =] =] =

The merge

> >
word 1

> >
word 2
word n »

N

word 1

word 2

word k

= Running time?

word 1

!

word 2

!

word m

4

!

!

= linear in the sizes of the postings list being merged

= As with merging sorted dictionary entries we can either do
pairwise binary tree type merging or do an n-way merge

Distributed indexing

= For web-scale indexing we must use a distributed
computing cluster

= Individual machines are fault-prone
= Can unpredictably slow down or falil
= How do we exploit such a pool of machines?

Google data centers

= Google data centers mainly contain commodity
machines

s Data centers are distributed around the world

= Estimate: a total of 1 million servers, 3 million
processors/cores (Gartner 2007)

= Estimate: Google installs 100,000 servers each
quarter

= Based on expenditures of 200-250 million dollars
per year

= This would be 10% of the computing capacity of
the world!?!

Fault tolerance
-

= Hardware fails

10

AFR (%)

>30% chance of failure

within 5 years ~ —_—

3-Month
6-Month
1 Year
2 Year
3 Year
4 Year
5 Year

Figure 2: Annualized failure rates broken down by age groups

http://labs.google.com/papers/disk_failures.pdf

= What happens when you have 1 million servers?
= Hardware is always failing!

Distributed indexing

= Maintain a master machine directing the indexing
job — considered “safe”

= Break up indexing into sets of (parallel) tasks

= Master machine assigns each task to an idle
machine from a pool

= Besides speed, one advantage of a distributed
scheme is fault tolerance

Distributed indexing

split chsl:)r:T(s cn;lzqugkes
]]
]]

= I = e

Can we break these steps into
parallelizable activities?

Specify exactly how we split the data

Parallel tasks

= We will use two sets of parallel tasks
s Parsers
= Inverters

= Break the input document corpus into splits

= Each split is a subset of documents
split

=)

Parsers

= Master assigns a split to an idle parser machine

s Parser reads a document at a time and emits
(term, doc) pairs

= Parser writes pairs into j partitions
= Each partition is for a range of terms’ first letters
= (e.g., a-f, g-p, q-z) — here j=3.

/ a-f
I

~19-P
q-z

Inverters

= An inverter collects all (term, doc) pairs for one
term-partition

= Sorts and writes to postings lists

-)) index for a-f

Data flow

assig’n/{ Master]“*~~~\-\g§sign

Postings

a-flg-p|g-z ja-f

a-f|g-p|lg-z j]-z

Reduce
phase

Map
phase

Segment files

MapReduce

= [he index construction algorithm we just
described is an instance of MapReduce

= MapReduce (Dean and Ghemawat 2004) is a
robust and conceptually simple framework for

= distributed computing without having to write
code for the distribution part

= The Google indexing system (ca. 2002) consists
of a number of phases, each implemented in
MapReduce

MapReduce

= Index construction is just one phase

= After indexing, we need to be ready to answer
queries
= [here are two ways to we can partition the index

s [erm-partitioned. one machine handles a
subrange of terms

s Document-partitioned: one machine handles a
subrange of documents

= Which do you think search engines use? Why?

Dynamic indexing

= Up to now, we have assumed that collections are static

= What happens when we need to
» add a document
s remove a document

= modify the contents of a document

News results for fires in LA

Los Angeles wild fires: residents refuse to abandon homes despite ... - 6 days ago

We live with the possibility of earthquake and fire in Los Angeles, it's the price you pay for
the sun and palm trees and large gardens. ...

Telegraph.co.uk

Official. some residents chide LA fire TV coverage -

The Associated Press -

Official. some residents chide LA fire TV coverage -

Victoria Advocate

= [his means that the dictionary and postings lists have to
be modified:

= Postings updates for terms already in dictionary
= New terms added to dictionary

Dynamic indexing
|
= What are our options?
= Rebuild the index from scratch
= Update the index each time

» Keep an auxiliary index with all of the new
changes

Common approach auxiliary index
N
= Maintain “"big” main index
= New docs go into “small” auxiliary index
= Deletions
= Invalidation bit-vector for deleted docs

s Filter docs output on a search result by this
iInvalidation bit-vector

= What is the cost of a search now?
= still basically the same
s search across both, merge results

Auxiliary index

= To make changes efficient for the auxiliary index, it
should be small enough to fit in main memory

s Otherwise, we’re back to where we started with
updating an on-disk index

= What happens when this index gets to big to fit in to
memory?

= We need to merge it in to the main index

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Every time we merge we merge with
the entire index

Can we do better?

Logarithmic merge

= Maintain a series of indexes, each twice as large
as the previous one.

= Keep smallest (Z,) in memory

= Larger ones (ly, |4, ...) on disk

= If Z, gets too big (> n), write to disk as |,

= or merge with |, (if |, already exists) as Z,
= Either write merge Z, to disk as |, (if no |,)
= Or merge with |, to form Z,

= efc.

Logarithmic merge

main memory

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

main memory

uvlT D W N -

Logarithmic merge

= Logarithmic merging is much more efficient for
Index construction

= On the order of linear vs. logarithmic

= What's the downside?
= But query processing now requires the merging of
O(log T) indexes
= \We can alleviate this some by using parallel
resources

Dynamic indexing at search
engines

]
= All the large search engines do dynamic indexing
= [heir indices have frequent incremental changes
= News items, new topical web pages

= But (sometimes/typically) they also periodically
reconstruct the index from scratch

= Query processing is then switched to the new
Index, and the old index is then deleted

Get Search News Recaps!

email: [

U paily ¥ Monthly

M Feeds and more info

iy
search engine

!

Go 18[6 'Y,\HOO! 'M" Columns | Marketing ' Searching '

Land Land Land Land Land Land

« Local Store And Inventory Data Poised To Transform "Online Shopping” | Main | SEO Company,
Fathom Online, Acquired By Geary Interactive »

Google Dance Is Back? Plus Google’s First Live Chat Recap
& Hyperactive Yahoo Slurp

Is the Google Dance back? Well, not really, but | am noticing Google Dance-like behavior from
Google based on reading some of the feedback at a WebmasterWorld thread.

The Google Dance refers to how years ago, a change to Google's ranking algorithm often began
showing up slowly across data centers as they reflected different results, a sign of coming changes.
These days Google's data centers are typically always showing small changes and differences, but

the differences between this data center and this one seem to be more like the extremes of the past
Google Dances.

So either Google is preparing for a massive update or just messing around with our heads. As of
now, these results have not yet moved over to the main Google.com results.

Ask, AOL &
More Lands

Newsletters ' Confe
& Feeds &) & Wel

L

netkli

Click here for

$40 Free

Advertising

- »
\

Qsearch~

the leading
provider of search
marketing jobs

\
PREMIUM MEMBERSHIP

Resources

= Chapter 4 of lIR

= Original publication on MapReduce: Dean and
Ghemawat (2004)

= Original publication on SPIMI: Heinz and Zobel
(2003)

Remaining problem...

= [his approach is scalable, but we can do better
= What is the memory requirement of a chunk?

= We need to store both the dictionary and the
postings list
= What is the size of the postings list dependent
on?
= Size of the postings list is dependent on the
number and size of the documents and...

= our posting list representation
= What is the size of the dictionary?

» depends on the number and length of terms
= Can we do any better?

Remaining problem with sort-
based algorithm

= Storing the actual words in the dictionary is expensive
= For our small corpus, the average length of an entry is 8 characters
= This increases the larger the corpus. Why?

= |deas?
= Instead of storing the words, for each word, we store an index
= We then have to keep a universal mapping from term to index

Index
dictionary .
0
ambitious — 0 1 T,
be —]
brutus — 2 2 L

