
Index Construction

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture4-indexconstruction.ppt

Administrative

  Homework 2
  Issues with assignment 1?
  Assignment handin procedure on course web

page

Google trends: “Michael Jackson”

~16.6 Million queries for “Michael Jackson” in Aug.
https://adwords.google.com/select/KeywordToolExternal

Google trends: “fires”

Google trends: cyclical queries

Hardware basics

  Many design decisions in information retrieval are
based on the characteristics of hardware

disk

main memory

cpu

Hardware basics

  fast, particularly
relative to hard-drive
access times

  gigahertz processors
  multi-core
  64-bit for larger

workable address
space

disk

main memory

cpu ?

Hardware basics

  GBs to 10s of GBs
for servers

  main memory buses
run at hundreds of
megahertz

  ~random access
disk

main memory

cpu

?

Hardware basics

  No data is transferred from
disk while the disk head is
being positioned

  Transferring one large
chunk of data from disk to
memory is faster than
transferring many small
chunks

  Disk I/O is block-based:
Reading and writing of
entire blocks (as opposed to
smaller chunks).

  Block sizes: 8KB to 256 KB.

disk

main memory

cpu

?

Hardware basics

  100s of GBs to TBs
  average seek time 5

ms
  transfer time per byte

0.02 µs

disk

main memory

cpu

?

RCV1: Our corpus for this lecture

  As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection

  This is one year of Reuters newswire (part of 1995 and
1996)

  Still only a moderately sized data set

Reuters RCV1 statistics

 statistic value
  documents 800K
  avg. # tokens per doc 200
  terms 400K
  non-positional postings 100M

Index construction

word 1 

word 2 

word n 

documents

1

2

m

…
…

index

  Documents are tokenized/
normalized

  Postings lists are sorted by
docID

How can we do this?

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction:
collecting documentIDs

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

now what?

running time?

Θ(tokens)

memory?

O(1)

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
sort dictionary

sort based on terms

and then?

running time?

Θ(T log T)

memory?

Θ(T)

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
create postings list

create postings lists
from identical entries

word 1 

word 2 

word n 

…

running time?

Θ(tokens)

What does this
imply about the

sorting algorithm?

Scaling index construction

  In-memory index construction does not scale
  What is the major limiting step?

  both the collecting document IDs and creating
posting lists require little memory since it’s just a
linear traversal of the data

  sorting is memory intensive! Even in-place sorting
algorithms still require O(n) memory

  For RCV1, we could do still do it in memory
  What about larger data sets?

  On-disk sorting

On-disk sorting
  What are our options?

  Literally, sort on-disk: keep all data on disk. When we need to
access entries, access entries

  Random access on disk is slow……
  Break up list into chunks. Sort chunks, then merge chunks (e.g.

unix “merge” function)

split
sort

chunks
merge
chunks

On-disk sorting

split

  Can do this while processing
  When we reach a particular size, start the sorting

process

On-disk sorting

  We can pick the chunk size so that we can sort
the chunk in memory

  Generally, pick as large a chunk as possible
while still being able to sort in memory

sort
chunks

On-disk sorting

  How can we do this?

merge
chunks

Binary merges

  Can do binary merges, with a merge tree
  For n chunks, how many levels will there be?

  log(n)

n-way merge

  More efficient to do an n-way merge, where you are
reading from all blocks simultaneously

  Providing you read decent-sized chunks of each
block into memory, you’re not killed by disk seeks

  Only one level of merges!
  Is it linear?

Another approach: SPIMI

  Sorting can still be expensive
  Is there any way to do the indexing without

sorting?
  Accumulate posting lists as they occur
  When size gets too big, start a new chunk
  Merge chunks at the end

Another approach

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 

1

1

1

1

1

1

1

1

1

1

1

1

Another approach
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 
so 
let 
it 
be 
with 
noble 
… 

1

1

1

1

1

1

1

1

1

1

1

1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

2

2

2

2

2

2

2

2

2

The merge
word 1 

word 2 

word n 

…

word 1 

word 2 

word m 

…

word 1 

word 2 

word k 

…

  Running time?
  linear in the sizes of the postings list being merged

  As with merging sorted dictionary entries we can either do
pairwise binary tree type merging or do an n-way merge

Distributed indexing

  For web-scale indexing we must use a distributed
computing cluster

  Individual machines are fault-prone
  Can unpredictably slow down or fail

  How do we exploit such a pool of machines?

Google data centers

  Google data centers mainly contain commodity
machines

  Data centers are distributed around the world
  Estimate: a total of 1 million servers, 3 million

processors/cores (Gartner 2007)
  Estimate: Google installs 100,000 servers each

quarter
  Based on expenditures of 200–250 million dollars

per year
  This would be 10% of the computing capacity of

the world!?!

Fault tolerance

  Hardware fails

  What happens when you have 1 million servers?
  Hardware is always failing!

http://labs.google.com/papers/disk_failures.pdf

>30% chance of failure

within 5 years

Distributed indexing

  Maintain a master machine directing the indexing
job – considered “safe”

  Break up indexing into sets of (parallel) tasks
  Master machine assigns each task to an idle

machine from a pool
  Besides speed, one advantage of a distributed

scheme is fault tolerance

Distributed indexing

Can we break these steps into
parallelizable activities?

Specify exactly how we split the data

split
sort

chunks
merge
chunks

Parallel tasks

  We will use two sets of parallel tasks
  Parsers
  Inverters

  Break the input document corpus into splits
  Each split is a subset of documents

split

Parsers

  Master assigns a split to an idle parser machine
  Parser reads a document at a time and emits

(term, doc) pairs
  Parser writes pairs into j partitions
  Each partition is for a range of terms’ first letters

  (e.g., a-f, g-p, q-z) – here j=3.

a-f

g-p

q-z

Inverters

  An inverter collects all (term, doc) pairs for one
term-partition

  Sorts and writes to postings lists

a-f

a-f

a-f

a-f

a-f

a-f index for a-f a-f

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

MapReduce

  The index construction algorithm we just
described is an instance of MapReduce

  MapReduce (Dean and Ghemawat 2004) is a
robust and conceptually simple framework for

  distributed computing without having to write
code for the distribution part

  The Google indexing system (ca. 2002) consists
of a number of phases, each implemented in
MapReduce

MapReduce

  Index construction is just one phase
  After indexing, we need to be ready to answer

queries
  There are two ways to we can partition the index

  Term-partitioned: one machine handles a
subrange of terms

  Document-partitioned: one machine handles a
subrange of documents

  Which do you think search engines use? Why?

Dynamic indexing
  Up to now, we have assumed that collections are static
  What happens when we need to

  add a document
  remove a document
  modify the contents of a document

  This means that the dictionary and postings lists have to
be modified:
  Postings updates for terms already in dictionary
  New terms added to dictionary

Dynamic indexing

  What are our options?
  Rebuild the index from scratch
  Update the index each time
  Keep an auxiliary index with all of the new

changes

Common approach auxiliary index

  Maintain “big” main index
  New docs go into “small” auxiliary index
  Deletions

  Invalidation bit-vector for deleted docs
  Filter docs output on a search result by this

invalidation bit-vector
  What is the cost of a search now?

  still basically the same
  search across both, merge results

Auxiliary index

  To make changes efficient for the auxiliary index, it
should be small enough to fit in main memory
  Otherwise, we’re back to where we started with

updating an on-disk index
  What happens when this index gets to big to fit in to

memory?
  We need to merge it in to the main index

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Every time we merge we merge with
the entire index

Can we do better?

Logarithmic merge

  Maintain a series of indexes, each twice as large
as the previous one.

  Keep smallest (Z0) in memory
  Larger ones (I0, I1, …) on disk
  If Z0 gets too big (> n), write to disk as I0

  or merge with I0 (if I0 already exists) as Z1

  Either write merge Z1 to disk as I1 (if no I1)

  Or merge with I1 to form Z2

  etc.

Logarithmic merge

main memory

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

  Logarithmic merging is much more efficient for
index construction

  On the order of linear vs. logarithmic
  What’s the downside?

  But query processing now requires the merging of
O(log T) indexes

  We can alleviate this some by using parallel
resources

Dynamic indexing at search
engines

  All the large search engines do dynamic indexing
  Their indices have frequent incremental changes

  News items, new topical web pages
  But (sometimes/typically) they also periodically

reconstruct the index from scratch
  Query processing is then switched to the new

index, and the old index is then deleted

Resources

  Chapter 4 of IIR
  Original publication on MapReduce: Dean and

Ghemawat (2004)
  Original publication on SPIMI: Heinz and Zobel

(2003)

Remaining problem…

  This approach is scalable, but we can do better
  What is the memory requirement of a chunk?
  We need to store both the dictionary and the

postings list
  What is the size of the postings list dependent

on?
  size of the postings list is dependent on the

number and size of the documents and…
  our posting list representation

  What is the size of the dictionary?
  depends on the number and length of terms
  Can we do any better?

Remaining problem with sort-
based algorithm

  Storing the actual words in the dictionary is expensive
  For our small corpus, the average length of an entry is 8 characters
  This increases the larger the corpus. Why?

  Ideas?
  Instead of storing the words, for each word, we store an index
  We then have to keep a universal mapping from term to index

ambitious
be
brutus
…

0
1
2
…

dictionary
0 

…

1 

2 

index

