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Administrative 

  Homework 2 
  Issues with assignment 1? 
  Assignment handin procedure on course web 

page 



Google trends: “Michael Jackson” 

~16.6 Million queries for “Michael Jackson” in Aug. 
https://adwords.google.com/select/KeywordToolExternal 



Google trends: “fires” 



Google trends: cyclical queries 



Hardware basics 

  Many design decisions in information retrieval are 
based on the characteristics of hardware 

disk 

main memory 

cpu 



Hardware basics 

  fast, particularly 
relative to hard-drive 
access times 

  gigahertz processors 
  multi-core 
  64-bit for larger 

workable address 
space 

disk 

main memory 

cpu ? 



Hardware basics 

  GBs to 10s of GBs 
for servers 

  main memory buses 
run at hundreds of 
megahertz 

  ~random access 
disk 

main memory 

cpu 

? 



Hardware basics 

  No data is transferred from 
disk while the disk head is 
being positioned 

  Transferring one large 
chunk of data from disk to 
memory is faster than 
transferring many small 
chunks 

  Disk I/O is block-based: 
Reading and writing of 
entire blocks (as opposed to 
smaller chunks). 

  Block sizes: 8KB to 256 KB. 

disk 

main memory 

cpu 

? 



Hardware basics 

  100s of GBs to TBs 
  average seek time 5 

ms 
  transfer time per byte 

0.02 µs 

disk 

main memory 

cpu 

? 



RCV1: Our corpus for this lecture 

  As an example for applying scalable index construction 
algorithms, we will use the Reuters RCV1 collection 

  This is one year of Reuters newswire (part of 1995 and 
1996) 

  Still only a moderately sized data set 



Reuters RCV1 statistics 

 statistic     value 
  documents     800K 
  avg. # tokens per doc  200 
  terms       400K 
  non-positional postings  100M 



Index construction 

word 1 

word 2 

word n 

documents 

1 

2 

m 

… 
… 

index 

  Documents are tokenized/
normalized 

  Postings lists are sorted by 
docID 

How can we do this? 



I did enact Julius 
Caesar I was killed  
i' the Capitol;  
Brutus killed me. 

Doc 1 

So let it be with 
Caesar. The noble 
Brutus hath told you 
Caesar was ambitious 

Doc 2 

Index construction: 
collecting documentIDs 

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

now what? 

running time? 

Θ(tokens) 

memory? 

O(1) 



Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: 
sort dictionary 

sort based on terms 

and then? 

running time? 

Θ(T log T) 

memory? 

Θ(T) 



Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: 
create postings list 

create postings lists 
from identical entries 

word 1 

word 2 

word n 

… 

running time? 

Θ(tokens) 

What does this 
imply about the 

sorting algorithm? 



Scaling index construction 

  In-memory index construction does not scale 
  What is the major limiting step? 

  both the collecting document IDs and creating 
posting lists require little memory since it’s just a 
linear traversal of the data 

  sorting is memory intensive!  Even in-place sorting 
algorithms still require O(n) memory 

  For RCV1, we could do still do it in memory 
  What about larger data sets? 

  On-disk sorting 



On-disk sorting 
  What are our options? 

  Literally, sort on-disk:  keep all data on disk.  When we need to 
access entries, access entries 

  Random access on disk is slow…… 
  Break up list into chunks.  Sort chunks, then merge chunks (e.g. 

unix “merge” function) 

split 
sort 

chunks 
merge 
chunks 



On-disk sorting 

split 

  Can do this while processing 
  When we reach a particular size, start the sorting 

process 



On-disk sorting 

  We can pick the chunk size so that we can sort 
the chunk in memory 

  Generally, pick as large a chunk as possible 
while still being able to sort in memory 

sort 
chunks 



On-disk sorting 

  How can we do this? 

merge 
chunks 



Binary merges 

  Can do binary merges, with a merge tree 
  For n chunks, how many levels will there be? 

  log(n) 



n-way merge 

  More efficient to do an n-way merge, where you are 
reading from all blocks simultaneously 

  Providing you read decent-sized chunks of each 
block into memory, you’re not killed by disk seeks 

  Only one level of merges! 
  Is it linear? 



Another approach: SPIMI 

  Sorting can still be expensive 
  Is there any way to do the indexing without 

sorting? 
  Accumulate posting lists as they occur 
  When size gets too big, start a new chunk 
  Merge chunks at the end 



Another approach 

I did enact Julius 
Caesar I was killed  
i' the Capitol;  
Brutus killed me. 

Doc 1 
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 



Another approach 
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 
so 
let 
it 
be 
with 
noble 
… 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

So let it be with 
Caesar. The noble 
Brutus hath told you 
Caesar was ambitious 

Doc 2 

2 

2 

2 

2 

2 

2 

2 

2 

2 



The merge 
word 1 

word 2 

word n 

… 

word 1 

word 2 

word m 

… 

word 1 

word 2 

word k 

… 

  Running time? 
  linear in the sizes of the postings list being merged 

  As with merging sorted dictionary entries we can either do 
pairwise binary tree type merging or do an n-way merge 



Distributed indexing 

  For web-scale indexing we must use a distributed 
computing cluster 

  Individual machines are fault-prone 
  Can unpredictably slow down or fail 

  How do we exploit such a pool of machines? 



Google data centers 

  Google data centers mainly contain commodity 
machines 

  Data centers are distributed around the world 
  Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007) 
  Estimate: Google installs 100,000 servers each 

quarter 
  Based on expenditures of 200–250 million dollars 

per year 
  This would be 10% of the computing capacity of 

the world!?! 



Fault tolerance 

  Hardware fails 

  What happens when you have 1 million servers? 
  Hardware is always failing!  

http://labs.google.com/papers/disk_failures.pdf 

>30% chance of failure  

within 5 years 



Distributed indexing 

  Maintain a master machine directing the indexing 
job – considered “safe” 

  Break up indexing into sets of (parallel) tasks 
  Master machine assigns each task to an idle 

machine from a pool 
  Besides speed, one advantage of a distributed 

scheme is fault tolerance 



Distributed indexing 

Can we break these steps into 
parallelizable activities? 

Specify exactly how we split the data 

split 
sort 

chunks 
merge 
chunks 



Parallel tasks 

  We will use two sets of parallel tasks 
  Parsers 
  Inverters 

  Break the input document corpus into splits 
  Each split is a subset of documents 

split 



Parsers 

  Master assigns a split to an idle parser machine 
  Parser reads a document at a time and emits 

(term, doc) pairs 
  Parser writes pairs into j partitions 
  Each partition is for a range of terms’ first letters 

  (e.g., a-f, g-p, q-z) – here j=3. 

a-f 

g-p 

q-z 



Inverters 

  An inverter collects all (term, doc) pairs for one 
term-partition 

  Sorts and writes to postings lists 

a-f 

a-f 

a-f 

a-f 

a-f 

a-f index for a-f a-f 



Data flow 

splits 

Parser 

Parser 

Parser 

Master 

a-f g-p q-z 

a-f g-p q-z 

a-f g-p q-z 

Inverter 

Inverter 

Inverter 

Postings 

a-f 

g-p 

q-z 

assign assign 

Map 
phase 

Segment files Reduce 
phase 



MapReduce 

  The index construction algorithm we just 
described is an instance of MapReduce 

  MapReduce (Dean and Ghemawat 2004) is a 
robust and conceptually simple framework for 

  distributed computing without having to write 
code for the distribution part 

  The Google indexing system (ca. 2002) consists 
of a number of phases, each implemented in 
MapReduce 



MapReduce 

  Index construction is just one phase 
  After indexing, we need to be ready to answer 

queries 
  There are two ways to we can partition the index 

  Term-partitioned: one machine handles a 
subrange of terms 

  Document-partitioned: one machine handles a 
subrange of documents 

  Which do you think search engines use? Why? 



Dynamic indexing 
  Up to now, we have assumed that collections are static 
  What happens when we need to 

  add a document 
  remove a document 
  modify the contents of a document 

  This means that the dictionary and postings lists have to 
be modified: 
  Postings updates for terms already in dictionary 
  New terms added to dictionary 



Dynamic indexing 

  What are our options? 
  Rebuild the index from scratch 
  Update the index each time 
  Keep an auxiliary index with all of the new 

changes 



Common approach auxiliary index 

  Maintain “big” main index 
  New docs go into “small” auxiliary index 
  Deletions 

  Invalidation bit-vector for deleted docs 
  Filter docs output on a search result by this 

invalidation bit-vector 
  What is the cost of a search now? 

  still basically the same 
  search across both, merge results 



Auxiliary index 

  To make changes efficient for the auxiliary index, it 
should be small enough to fit in main memory 
  Otherwise, we’re back to where we started with 

updating an on-disk index  
  What happens when this index gets to big to fit in to 

memory? 
  We need to merge it in to the main index 



Merging 

Aux: 

Main: 



Merging 

Aux: 

Main: 



Merging 

Aux: 

Main: 



Merging 

Aux: 

Main: 

Every time we merge we merge with 
the entire index 

Can we do better? 



Logarithmic merge 

  Maintain a series of indexes, each twice as large 
as the previous one. 

  Keep smallest (Z0) in memory 
  Larger ones (I0, I1, …) on disk 
  If Z0 gets too big (> n), write to disk as I0 

  or merge with I0 (if I0 already exists) as Z1 

  Either write merge Z1 to disk as I1 (if no I1) 

  Or merge with I1 to form Z2 

  etc. 



Logarithmic merge 

main memory 



Logarithmic merge 

main memory 

1 

2 

3 

4 

5 

… 



Logarithmic merge 

main memory 

1 

2 

3 

4 

5 

… 



Logarithmic merge 

main memory 
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… 



Logarithmic merge 

main memory 
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… 



Logarithmic merge 

main memory 
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… 



Logarithmic merge 

main memory 

1 

2 
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4 
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… 



Logarithmic merge 

main memory 

1 

2 

3 

4 

5 

… 



Logarithmic merge 

main memory 

1 

2 

3 

4 

5 

… 



Logarithmic merge 

  Logarithmic merging is much more efficient for 
index construction 

  On the order of linear vs. logarithmic 
  What’s the downside? 

  But query processing now requires the merging of 
O(log T) indexes 

  We can alleviate this some by using parallel 
resources 



Dynamic indexing at search 
engines 

  All the large search engines do dynamic indexing 
  Their indices have frequent incremental changes 

  News items, new topical web pages 
  But (sometimes/typically) they also periodically 

reconstruct the index from scratch 
  Query processing is then switched to the new 

index, and the old index is then deleted 





Resources 

  Chapter 4 of IIR 
  Original publication on MapReduce: Dean and 

Ghemawat (2004) 
  Original publication on SPIMI: Heinz and Zobel 

(2003) 



Remaining problem… 

  This approach is scalable, but we can do better 
  What is the memory requirement of a chunk? 
  We need to store both the dictionary and the 

postings list 
  What is the size of the postings list dependent 

on? 
  size of the postings list is dependent on the 

number and size of the documents and… 
  our posting list representation 

  What is the size of the dictionary? 
  depends on the number and length of terms 
  Can we do any better? 



Remaining problem with sort-
based algorithm 

  Storing the actual words in the dictionary is expensive 
  For our small corpus, the average length of an entry is 8 characters 
  This increases the larger the corpus. Why? 

  Ideas? 
  Instead of storing the words, for each word, we store an index 
  We then have to keep a universal mapping from term to index 

ambitious 
be 
brutus 
… 

0 
1 
2 
… 

dictionary 
0 

… 

1 

2 

index 


