
Index Construction

David Kauchak
cs160

Fall 2009
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture4-indexconstruction.ppt

Administrative

  Homework 2
  Issues with assignment 1?
  Assignment handin procedure on course web

page

Google trends: “Michael Jackson”

~16.6 Million queries for “Michael Jackson” in Aug.
https://adwords.google.com/select/KeywordToolExternal

Google trends: “fires”

Google trends: cyclical queries

Hardware basics

  Many design decisions in information retrieval are
based on the characteristics of hardware

disk

main memory

cpu

Hardware basics

  fast, particularly
relative to hard-drive
access times

  gigahertz processors
  multi-core
  64-bit for larger

workable address
space

disk

main memory

cpu ?

Hardware basics

  GBs to 10s of GBs
for servers

  main memory buses
run at hundreds of
megahertz

  ~random access
disk

main memory

cpu

?

Hardware basics

  No data is transferred from
disk while the disk head is
being positioned

  Transferring one large
chunk of data from disk to
memory is faster than
transferring many small
chunks

  Disk I/O is block-based:
Reading and writing of
entire blocks (as opposed to
smaller chunks).

  Block sizes: 8KB to 256 KB.

disk

main memory

cpu

?

Hardware basics

  100s of GBs to TBs
  average seek time 5

ms
  transfer time per byte

0.02 µs

disk

main memory

cpu

?

RCV1: Our corpus for this lecture

  As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection

  This is one year of Reuters newswire (part of 1995 and
1996)

  Still only a moderately sized data set

Reuters RCV1 statistics

 statistic value
  documents 800K
  avg. # tokens per doc 200
  terms 400K
  non-positional postings 100M

Index construction

word 1 

word 2 

word n 

documents

1

2

m

…
…

index

  Documents are tokenized/
normalized

  Postings lists are sorted by
docID

How can we do this?

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction:
collecting documentIDs

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

now what?

running time?

Θ(tokens)

memory?

O(1)

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
sort dictionary

sort based on terms

and then?

running time?

Θ(T log T)

memory?

Θ(T)

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
create postings list

create postings lists
from identical entries

word 1 

word 2 

word n 

…

running time?

Θ(tokens)

What does this
imply about the

sorting algorithm?

Scaling index construction

  In-memory index construction does not scale
  What is the major limiting step?

  both the collecting document IDs and creating
posting lists require little memory since it’s just a
linear traversal of the data

  sorting is memory intensive! Even in-place sorting
algorithms still require O(n) memory

  For RCV1, we could do still do it in memory
  What about larger data sets?

  On-disk sorting

On-disk sorting
  What are our options?

  Literally, sort on-disk: keep all data on disk. When we need to
access entries, access entries

  Random access on disk is slow……
  Break up list into chunks. Sort chunks, then merge chunks (e.g.

unix “merge” function)

split
sort

chunks
merge
chunks

On-disk sorting

split

  Can do this while processing
  When we reach a particular size, start the sorting

process

On-disk sorting

  We can pick the chunk size so that we can sort
the chunk in memory

  Generally, pick as large a chunk as possible
while still being able to sort in memory

sort
chunks

On-disk sorting

  How can we do this?

merge
chunks

Binary merges

  Can do binary merges, with a merge tree
  For n chunks, how many levels will there be?

  log(n)

n-way merge

  More efficient to do an n-way merge, where you are
reading from all blocks simultaneously

  Providing you read decent-sized chunks of each
block into memory, you’re not killed by disk seeks

  Only one level of merges!
  Is it linear?

Another approach: SPIMI

  Sorting can still be expensive
  Is there any way to do the indexing without

sorting?
  Accumulate posting lists as they occur
  When size gets too big, start a new chunk
  Merge chunks at the end

Another approach

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 

1

1

1

1

1

1

1

1

1

1

1

1

Another approach
I 
did 
enact 
julius 
caesar 
was 
killed 
i’ 
the 
capitol 
brutus 
me 
so 
let 
it 
be 
with 
noble 
… 

1

1

1

1

1

1

1

1

1

1

1

1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

2

2

2

2

2

2

2

2

2

The merge
word 1 

word 2 

word n 

…

word 1 

word 2 

word m 

…

word 1 

word 2 

word k 

…

  Running time?
  linear in the sizes of the postings list being merged

  As with merging sorted dictionary entries we can either do
pairwise binary tree type merging or do an n-way merge

Distributed indexing

  For web-scale indexing we must use a distributed
computing cluster

  Individual machines are fault-prone
  Can unpredictably slow down or fail

  How do we exploit such a pool of machines?

Google data centers

  Google data centers mainly contain commodity
machines

  Data centers are distributed around the world
  Estimate: a total of 1 million servers, 3 million

processors/cores (Gartner 2007)
  Estimate: Google installs 100,000 servers each

quarter
  Based on expenditures of 200–250 million dollars

per year
  This would be 10% of the computing capacity of

the world!?!

Fault tolerance

  Hardware fails

  What happens when you have 1 million servers?
  Hardware is always failing!

http://labs.google.com/papers/disk_failures.pdf

>30% chance of failure

within 5 years

Distributed indexing

  Maintain a master machine directing the indexing
job – considered “safe”

  Break up indexing into sets of (parallel) tasks
  Master machine assigns each task to an idle

machine from a pool
  Besides speed, one advantage of a distributed

scheme is fault tolerance

Distributed indexing

Can we break these steps into
parallelizable activities?

Specify exactly how we split the data

split
sort

chunks
merge
chunks

Parallel tasks

  We will use two sets of parallel tasks
  Parsers
  Inverters

  Break the input document corpus into splits
  Each split is a subset of documents

split

Parsers

  Master assigns a split to an idle parser machine
  Parser reads a document at a time and emits

(term, doc) pairs
  Parser writes pairs into j partitions
  Each partition is for a range of terms’ first letters

  (e.g., a-f, g-p, q-z) – here j=3.

a-f

g-p

q-z

Inverters

  An inverter collects all (term, doc) pairs for one
term-partition

  Sorts and writes to postings lists

a-f

a-f

a-f

a-f

a-f

a-f index for a-f a-f

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

MapReduce

  The index construction algorithm we just
described is an instance of MapReduce

  MapReduce (Dean and Ghemawat 2004) is a
robust and conceptually simple framework for

  distributed computing without having to write
code for the distribution part

  The Google indexing system (ca. 2002) consists
of a number of phases, each implemented in
MapReduce

MapReduce

  Index construction is just one phase
  After indexing, we need to be ready to answer

queries
  There are two ways to we can partition the index

  Term-partitioned: one machine handles a
subrange of terms

  Document-partitioned: one machine handles a
subrange of documents

  Which do you think search engines use? Why?

Dynamic indexing
  Up to now, we have assumed that collections are static
  What happens when we need to

  add a document
  remove a document
  modify the contents of a document

  This means that the dictionary and postings lists have to
be modified:
  Postings updates for terms already in dictionary
  New terms added to dictionary

Dynamic indexing

  What are our options?
  Rebuild the index from scratch
  Update the index each time
  Keep an auxiliary index with all of the new

changes

Common approach auxiliary index

  Maintain “big” main index
  New docs go into “small” auxiliary index
  Deletions

  Invalidation bit-vector for deleted docs
  Filter docs output on a search result by this

invalidation bit-vector
  What is the cost of a search now?

  still basically the same
  search across both, merge results

Auxiliary index

  To make changes efficient for the auxiliary index, it
should be small enough to fit in main memory
  Otherwise, we’re back to where we started with

updating an on-disk index
  What happens when this index gets to big to fit in to

memory?
  We need to merge it in to the main index

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Merging

Aux:

Main:

Every time we merge we merge with
the entire index

Can we do better?

Logarithmic merge

  Maintain a series of indexes, each twice as large
as the previous one.

  Keep smallest (Z0) in memory
  Larger ones (I0, I1, …) on disk
  If Z0 gets too big (> n), write to disk as I0

  or merge with I0 (if I0 already exists) as Z1

  Either write merge Z1 to disk as I1 (if no I1)

  Or merge with I1 to form Z2

  etc.

Logarithmic merge

main memory

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

main memory

1

2

3

4

5

…

Logarithmic merge

  Logarithmic merging is much more efficient for
index construction

  On the order of linear vs. logarithmic
  What’s the downside?

  But query processing now requires the merging of
O(log T) indexes

  We can alleviate this some by using parallel
resources

Dynamic indexing at search
engines

  All the large search engines do dynamic indexing
  Their indices have frequent incremental changes

  News items, new topical web pages
  But (sometimes/typically) they also periodically

reconstruct the index from scratch
  Query processing is then switched to the new

index, and the old index is then deleted

Resources

  Chapter 4 of IIR
  Original publication on MapReduce: Dean and

Ghemawat (2004)
  Original publication on SPIMI: Heinz and Zobel

(2003)

Remaining problem…

  This approach is scalable, but we can do better
  What is the memory requirement of a chunk?
  We need to store both the dictionary and the

postings list
  What is the size of the postings list dependent

on?
  size of the postings list is dependent on the

number and size of the documents and…
  our posting list representation

  What is the size of the dictionary?
  depends on the number and length of terms
  Can we do any better?

Remaining problem with sort-
based algorithm

  Storing the actual words in the dictionary is expensive
  For our small corpus, the average length of an entry is 8 characters
  This increases the larger the corpus. Why?

  Ideas?
  Instead of storing the words, for each word, we store an index
  We then have to keep a universal mapping from term to index

ambitious
be
brutus
…

0
1
2
…

dictionary
0 

…

1 

2 

index

