BACKPROPAGATION

David Kauchak
CS158 — Fall 2023

10/26/23

Admin

|
Assignment 7

Assignment 8 released on Monday. Start ASAP!

Neural network
| B |

inputs

Individual

perceptrons/neurons

Neural network
| B |

some inputs are
inputs provided /entered

10/26/23

Neural network Neural network
= =
inputs inputs
each perceptron computes and
calculates an answer
those answers become inputs
for the next level
5 6
Neural network A neuron/perceptron
= =
Input x1
Weight wi
inputs
oot Weight w2
put e ——— Outputy
/ activation function
Input x3: ““Weight wa

finally get the answer after cil

levels compute

in= E WX,
i

Weight wa

Input xa

10/26/23

Activation functions

|
hard threshold:
g(m)zll if in>-b

0 otherwise

sigmoid e

gx)=

-x

l+e

Training
[

2
INPUt X1 |

2
. @ \ Output = x1 xor x2
b= —_
2
b=2

2 2
Input x2 =

X4 XOr X
o 1 2

0 0
1
tanh x 0
How do we learn the weights2 1 1
1 0
9 10
Learning in multilayer networks Backpropagation: intuition
| = | =
Gradient descent method for learning weights by
Challenge: for multilayer networks, we don’t know what the optimizing a loss function
expected output/error is for the internal nodes!
calculate output of all nodes
how do we learn these weights? .
calculate the weights for the output layer based on
w\w/ W/ ww
the error
W w
expected output?
v “backpropagate” errors through hidden layers
perceptron neural network
linear model
11 12

10/26/23

Backpropagation: intuition
o

dod

Y/ We can calculate the actual error here

Backpropagation: intuition
o

Key idea: propagate the
error back to this layer

13

14

Backpropagation: intuition Backpropagation: intuition
| |
error ~w3 * error
error for node is ~ w; * error Caleulate as normal, but weight the error
15 16

Backpropagation: the details Backpropagation: the details
|] |]
Gradient descent method for learning weights by X
optimizing a loss function Notation:
m: features/inputs
x hn
calculate output of all nodes \) d: hidden nodes
- |
i hy: output from
calculate the updates directly for the output layer \/ «
Xm hidd de k
e I en node
“backpropagate” errors through hidden layers How meny weights (ignore bias for now]?
loss = 2%0‘—5‘)2 squared error
17 18
Backpropagation: the details Backpropagation: the details
|) |)
Notation: Notation:
m: features/inputs m: features/inputs
x n « n
ot) d: hidden nodes \ ot () d: hidden nodes
va hy: output from / va hy: output from
Xm hidden nodes Xm hidden nodes
he he
d weights: denote v How many weights?
19 20

10/26/23

Backpropagation: the details Backpropagation: the details
|] |]
. Gradient descent method for learning weights by
Notation: optimizing a loss function
it m: features/inputs]
X i a:gmin‘.‘_.EE(y—yf
war v o d: hidden nodes X
out ()
v hy: output from
W calculate output of all nodes
Xm hidden nodes
ha
4% ms denote wig « veas: weight from nput 3 fo hidden calculate the updates directly for the output layer
node 2
first index = hidden nod. ® wa all the m weight: iated with “ ” .
seind o = fome Mmoo aocale backpropagate” errors through hidden layers
21 22
Backpropagation: the details Backpropagation: the details
|) |)
1. Calculate outputs of all nodes 1. Calculate outputs of all nodes
war 5] war 5]
Xm e Xm e X =
"’ "’ Wk = X ;Wk,x,
What are h in terms of x and w2 hk = f(wk ’ x)
fis the activation function
23 24

10/26/23

Backpropagation: the details

Backpropagation: the details

| |
1. Calculate outputs of all nodes 1. Caleulate outputs of all nodes
Wi Wi
X, war h X3 w2 h
v v
war N war N
out () out ()
va va
Wam Wam
Xm Xm
ha ha
1
hk = f(wk X)= PE— What is out in terms of h and v2
I+e™
fis the acfivation function
25

26

27

Backpropagation: the details

1. Calculate outputs of all nodes

wn

out ()

ha

Backpropagation: the details
e

2. Calculate new weights for output layer

h Vi
out (§)

ha

. 1 a2
argmin,, EE()’ =y

Want to take a small step towards decreasing loss. How?

28

Recall: derivative chain rule

d
S (e =2

Recall: derivative chain rule
|

d , d
0 = f(9() 7= 90

29

30

Output layer weights Output layer weights
| -
. 1, L d iow
argmin, , 25(y—y> h) == W)=y~ freh) h)
v (= fvh d y va
dloss d (1 . he =-(y-Jslv))Ef(v h)
——=—\50-" (hs
dv, dv \2 d
==(y=f-h)f'(v-h)—v-h
d (1 S Fveh) dv,
= e (e (y = “h))? y=f(v-
7 (zO s my) ~(r=), vih= Y,
;
. d .
B (y_'/(vh))divk(y_/(v‘h)) The actual update is a step towards decreasing loss:
ve=v+hef (v - flv-b)
31

32

10/26/23

Output layer weights Output layer weights
= =
V=t hif' - —fw-h) v N V=t f' - —fw-h) v "
out (9) out (9)
ha ha
What are each of these? size and direction of the
feature associated with how far from correct
Do they make sense individually? this weight slope of the activation and which direction
function where input is at
33 34
Output layer weights Output layer weights
= =
n=v+hf - -fw-h) w_ v) n=v+hf@-DH-fw-h) w N
out (9) out (3)

va

how far from correct
and which direction

(y=fv-h)>0
(y=fv-h)<0

va

how far from correct
and which direction

(y=f(v-h))>0 prediction < label: increase the weight

(y=f(v-h))<0Q prediction > label: decrease the weight

bigger difference = bigger change

35

36

10/26/23

Output layer weights
o

vk=vthf' - -flv-h) =

<

out ()

va

slope of the activation
function where input is at

smaller step” |

Output layer weights
o

vk=vthf' - -flv-h) =

<

out ()
vé
ha
size and direction of the

feature associated with
perceptron update: this weight
W =W, XY,
gradient descent update:
W =W, HX,y,0

37

38

Backpropagation: the details
e

Gradient descent method for learning weights by
optimizing a loss function

. 1 a2
argmin,, » —(y-J)
gmin,, 22 3
calculate output of all nodes
2. calculate the updates directly for the output layer

5. “backpropagate” errors through hidden layers

Backpropagation
|)
3. “backpropagate” errors through hidden layers

war

w
Xm
ha
) 1,
argmin, 3 20-5)

Want to take a small step towards decreasing loss. How?

39

40

10

10/26/23

Hidden layer weights Hidden layer weights
| |
X1 P X P
dioss __d (l(v—ﬁ)z) i v " dioss __d (l(v—ﬁ)z) i v "
dwy dwg\2 7 7 dwy dwy\2 7 7 .
d (1
co=Go-remy) s=feem
d
== f M)y =)
Wi Remember: wy; is the weight for hidden node k from input j
- f - fem
dw,
) d
=== fENS O v cainrte
ki
41 42
Hidden layer weights Hidden layer weights
= =
i . i .
W13 v out Wi3 v
| d
=== @) v)=y
aw,

ki

derivative of the other Ui components are not
affected by wij

—=(= S WP)=,
dwy

(R GO A—
WH
= FO M@ I 000 = fke)

"

d

dw,

=== fO)Ry,

flw, - x)

chain rule

=Sl f O, ‘X)LM X
dwy

G SR S0, W= D,
:

= —xif'(wic- Jui(f' (v - Wy = f(v - b))

43

44

11

10/26/23

- dioss __d (1(»_7%2)
i(v"‘)) dw, dw,\2
d . 4 (Y peny
=K(2<H(») dm,(z(’ Fehy)]
= F (v = o (v Fo) (y— Fr-h
=(-f0v h))d“(» fvh) O-f >)dwh(,\ fv-hy)

==(y=f-m)f'(v-h)

B A (B
dw,

(=)y~
dw,

==L feny === f =L pem “ out
v, dw, ==(y=fO-m)f'(v-h, @ flw,-x)
i d w,
—— (= fO)R ——v-h =—(y=) f') ——v-h '
(= fO-h)f'(v)d‘ﬁ v (y=f-h)f'(v)dw” v e -x)ﬁw‘ .
:f(yff(\r"h))f‘(w/l)%v‘hk ==(v=fO)V Ry f (w00,
Wy
oy 4
What happened here2 == Sl f by, dw, b
. d What is the sl ith
= F)y, - Fou,x) at is the slope vk with respect to Wiy
=== [)Ly v, - r)d%w_ x
=—hf'(v-W)(y - f-h) =—xjf' W u(f' - Wy — - h)
45 46
Backpropagation Backpropagation
| |
output layer hidden layer output layer hidden layer
= —hf'(v- W~ - h) = —f(we - uef (- Yy — (-) = —hif' v W) — -) = Jf Ow - w0 By = (-)
v i t tput error
What's different? input SR error " cetvtion
slope slope
wi wi
P L P [
. v . v
out out
va va
Wam Wam
Xm Xm slope of weight from hidden layer
hs ha wx fo output layer
48 49

12

10/26/23

Backpropagation Backpropgation generalization
| |
output layer hidden layer output layer
—hif'(v - h)(y — f(w - h)) =—xf' we - uef' - Ky = f @+ b)) V= v+ B 0 Ry — Fv - h))
input 0”'?“" error input ouvr)uV. error
activation activation
slope slope
wi
X war hi
w3l vi
o Vi =V + hkAum
v . .
X how much do we how much of the A= 'y =f(V-h) modified error
ha need to change error came from this o
hidden node derivative of error
input at node
50

51

52

v = vk + hief'(v -) (y — f(v - h))

Backpropgation generalization

output layer hidden layer

Wi = Wi+ 25 (wk) vy /(0) (y = fw -)

v =v,+hA,, Wy =Wy + XA,

A, =f'vh)(y-f(v-h)) Ay ='W f'v-h)(y=f(v-h)

Can we write this more succinctly?

Backpropgation generalization
e

output layer hidden layer

% = vk + hief'(v -) (y — f(v - h))

v=v,+hA,, Wy =Wy + XA,

A, = ' h)(y-f(vh) A= e f -y = fv-h)
=f'wexwA,,

Wi = Wi+ 25 (wk) vy /(0) (y = v)

53

13

10/26/23

Backpropgation generalization Backprop on multilayer networks
= =
output layer hidden layer
Vo=V +hA,, Wy =Wy + XA
Anything different ot this layer2
A, =f'-)(y=fv-h) A= £ X)W f v h)(y = f(vh))
=V, i ity
weight to output layer modified error of w=w+input* A
output layer output
w=w+input*A_, ..
A e = f (current _input)w,,,.,, A,
54 55

Backprop on multilayer networks Backprop on multilayer networks
| |
W=winput*A,,,, W= wHinput* A,
A Fcurrentinputyw,, Ay = f current _inputyw,,.,
w=w+input* A,,,,”,m w=w+input* A,,,,”,m
What “errors” at the next layer does the
highlighted edge affect?
56 57

14

10/26/23

Backprop on multilayer networks Backprop on multilayer networks
[[
w=w+input*A,,. .. —
By = RNt inputVv,,, A, = current _input)w,,,
w=w+input*A,,., w=w+input*A,,,,
What “errors” at the next layer does the
highlighted edge affect?
58 59

Backprop on multilayer networks Backprop on multilayer networks
|) |)
wewinpur*A,,,, e imput*A,
By = F (CUTTEnt _input) 3, s current Zinput) 3 W, s
Wewinput* A,
A rrens = [(current _input)w ..., A,
w=w+input* A Backpropogation:
o - Calculate new weights and modified errors at output layer
- Recursively calculate new weights and modified errors on
hidden layers based on recursive relationship
- Update model with new weights
60

61

15

10/26/23

Multiple output nodes Multiple output nodes
| |
w=winput* A, w=winput* A,
A = f current _input) 31,8 s = f ctrrent _input) 31,8
wewinput* A, iUt * A
Aprene = f (current _inpun),,,, A, = current _input) B Wi g
w=w+input * AWW w=w+input * AWW
How does multiple outputs change things? How does multiple outputs change things?
62 63

Backpropagation implementation
e

Output layer update:
Ve =Vt b (= f O m)f (v)

Hidden layer update:
Wy =y 0, 00, WS) =)

Any missing information for implementation?

Backpropagation implementation
|
Output layer update:

Ve = v+ h(y - fO) £)

Hidden layer update:
wyy = wy; + X,), f i)y - f(-h))

1. What activation function are we using

2. What is the derivative of that activation function

64

65

16

10/26/23

Activation function derivatives Learning rate
| |
sigmoid Output layer update:
$(x)= _ Ve =V + b (y = f-h)f'(v-h)
I+e™
Hidden layer update:
!
§'(x) = s(x)(1 = 5(x) Wy =Wy + B O, 00)y = £ (v)
tanh
* Like gradient descent for linear classifiers, use a learning rate
d 2 .
Etanh(x) =1-tanh"x T * Often will start larger and then get smaller
66 67
Backpropagation implementation Handling bias
|) |)
Just like gradient descent!
wit N
n
for some number of iterations: x_own “
war
randomly shuffle training data out
for each example: v
Compute all outputs going forward Xm -
Calculate new weights and modified errors at output ha
layer
Recursively calculate new weights and modified errors on
hidden layers based on recursive relationship
Update model with new weights How should we learn the bias?
68 69

17

Handling bias Online vs. batch learning
| |
for some number of iterations:
randomly shuffle training data
X n for each example:
war v Compute all outputs going forward
ovt Calculate new weights and modified errors at output layer
Recursively calculate new weights and modiified errors on hidden layers
fam v based on recursive relationship
s e / Update model with new weights
— 1
1 Wa(m+1)
1. Add an extra feature hard-wired to 1 to all the Online learning: update weights after each example
examples
2. For other layers, add an extra parameter whose input is Batch learning?
always 1
70 71
Batch learning Many variations
|) |)
for some number of iterations: Momentum: include a factor in the weight update to keep moving in the
direction of the previous update
randomly shuffle training data
initialize weight accumulators to O (one for each weight) Mini-batch:
for each example: Compromise between online and batch
Compute all outputs going forward Avoids noisiness of updates from online while making more educated
Calculate new weights and modified errors at output layer weight updates
Recursively calculate new weights and modified errors on hidden layers
based on recursive relationship Simulated annedling:
Add new weights to weight accumulators With some probability make a random weight update
Divide weight accumulators by number of examples Reduce this probability over time
Update model weights by weight accumulators
Process all of the examples before updating the weights
72 73

10/26/23

18

10/26/23

Challenges of neural networks?
o o

Picking network configuration

Can be slow to train for large networks and large
amounts of data

Loss functions (including squared error) are generally
not convex with respect to the parameter space

History of Neural Networks

McCulloch and Pitts (1943) — introduced model of
artificial neurons and suggested they could learn

Hebb (1949) — Simple updating rule for learning
Rosenblatt (1962) - the perceptron model
Minsky and Papert (1969) — wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s--
Rosenblatt) — invented backpropagation learning for
multilayer networks

74 75

it /wwwnytimes.com/2012/06/26 /technol
f-computers-evick

ogy/in-a-big-network P
of -machine-learning.html2_r=0

76 77

19

