
CS158 - Assignment 3

Perceptron Learning Algorithm
Due: Sunday, September 17 by 11:59pm

For this assignment we will be implementing some of the perceptron learning algorithm variations
and comparing both their performance and runtimes. As always, make sure to read through the
entire handout before starting. You may (and I would strongly encourage you to) work with a
partner on this assignment. If you do, you must both be there whenever you are working on the
project. If you’d like a partner for the lab, e-mail me asap and I can try and pair people up.

Requirements

Implement the following two perceptron learning algorithm variants:

1. Implement a class called PerceptronClassifier that implements the Classifier interface.
Your implementation must meet the following guidelines:

• Follow the basic algorithm outlined in class (and in the book), updating the weights
when a mistake is made. You do NOT need to check for convergence, we will only stop
when we have reached the iteration limit.

• Include a zero parameter constructor.

• To figure which weights you’ll need in your trainmethod you can call the getAllFeatureIndices()
method from the data set that’s passed in. The features in the set returned will define
the features that your classifier will be learning over, i.e. the weights.

1



• Initially all of the weights and the b-value should start out at 0.

• Include a method called setIterations that takes an integer and sets the number of
iterations to iterate over on the data. By default, the number of iterations should be set
to 10.

• Include a toString method that returns the weights and the b value of the classifier as
a string in the following format:

0:weight_0 1:weight_1 2:weight2 ... n:weight_n b-value

that is, <feature_number>:<weight>, space separated with the features in increasing
order.

2. Implement a class called AveragePerceptronClassifier that implements the Classifier

interface. This class should follow the same specification as the basic perceptron algorithm
(including constructor, setIterations and toString), however, in addition to recalculating
the weight vector each time a mistake is make, we will also keep track of an average weight
vector that is the weighted average of all of the weight vectors seen so far (called the “average
perceptron” algorithm in the book and slides).

The pseudocode in the book for this algorithm is NOT correct so I have included a
correct version here:

2



w = [0,0,...,0] // normal weights, one for each feature

b = 0 // normal b

u = [0,0,...,0] // aggregate weights, one for each feature

b2 = 0

updated = 0

total = 0

for iter = 1 ... MaxIter{

// randomly shuffle the dataset

for all (x,label) in dataset{

if ((w x + b) * label <= 0 ){ // if we misclassify example x using weights w

// update our final, weighted weights

for each u_i in u:

u_i = u_i + updated * w_i

b2 = b2 + updated * b

// update all the perceptron weights

for each w_i in w:

w_i = w_i + label * x_i

b = b + label

updated = 0

}// end of misclassify

updated = updated+1

total = total + 1

} // end of dataset for loop

} // end of outer loop

// do one last weighted update here of the u and b2 weights based on the final weights

// divide all of the aggregate weights by the total number of examples

for each u_i in u:

u_i = u_i/total

b2 = b2/total

return (u, b2)

This version works by keeping a running total in updated of the number of examples the
current weights have gotten correct. When a mistake is made by the weights, we add to our
aggregate weights (u and b2) a weighted copy of the current weight vector. In the end, we
then normalize the weights by the total number of examples we examined during training.
This approach can suffer from overflow on the weights in some rare circumstances, but it is

3



easier to implement.

Starter

We’ll be using Github Classroom to generate our repo. You can join by going to:

https://classroom.github.com/a/7tLhsR2y

Remember that if you want to work in a team (good idea!) the first person should create the team
name and the second person should then select that team.

Code

The starter code includes all of the same code as last time with the following changes:

- I have included a class called ClassifierTimer in the ml.classifier package. This class
implements functionality for timing how long it takes for a classifier to train and test.

Data

I have included three .csv files for use on this assignment:

- titanic-train.csv: The same training data as our last assignment.

- simple1.csv: The first example perceptron learning algorithm walkthrough from the notes.

- simple2.csv: The second example perceptron learning algorithm walkthrough from the
notes.

Evaluation

Once you have your two perceptron classifier algorithms working, let’s see how well they do!

Answer the following questions and put them in a file called experiments (pick some reasonable file
type). Explicitly label each answer with the question number and make sure to put your name(s)
at the top of the file.

1. What is the accuracy of the two perceptron classifiers on the Titanic data set. To calculate
this, generate a random 80/20 split (using dataset.split(0.8)) train the model on the 80%
fraction and then evaluate the accuracy on the 20% fraction. Repeat this 100 times and
average the results (hint: do the repetition in code :).

4



2. Use the ClassifierTimer class to compare the runtime performance of the three classifiers
we’ve implemented (decision tree and the two perceptron variants). Do the results make
sense? Include a 1-2 sentence explanation.

3. Pick one other experiment of your own choosing. It doesn’t need to be complicated, but
it should follow good experimental practices. Briefly state the experiment (1-2 sentences),
present the results (in some reasonable way), and provide a 1-2 sentence analysis of the results.

Hints/Advice

• I have included two very basic CSV files where you know what the answer at each step of the
algorithm should be because we looked at them in class. I strongly encourage you to check
your results on these first. Because of the simplicity of the perceptron learning algorithm,
it can be challenging to make sure your code is working correctly. To compare against the
results in the slides, you’ll need to fix b to zero. To do this, just comment out the line in your
code that updates b. In addition, you’ll need to start out the weight vector at 1.0 (instead of
0.0). Once you’ve done this, your answers should be identical to those on the slides.

• As always, test/debug incrementally!!! Do NOT simply try and code the whole thing up and
then start debugging from there. Break the problem into smaller subproblems/submethods,
implement them one at a time and test each one before moving on. I know this seems like it
takes more time, but the time you put in early on will more than make up for it down the
road both in time and grief.

• Don’t forget that you need to randomize the order which you traverse your examples before
each iteration.

• The classify method should return the classifier’s prediction, i.e. a 1 or a -1, NOT the
distance from the hyperplane, i.e., the weighted sum plus the bias.

Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

• Implement a class called VotedPerceptronClassifier that implements the Classifier in-
terface. Your implementation:

– Should have the same methods as the basic perceptron algorithm (i.e. same construc-
tor and setIterations method), however, you don’t have to implement the toString

method.

– Should keep track of all of the weight vectors found during training along with their
votes (i.e. how many examples were correctly classified by that weight vector).

5



– The classify method should then calculate a voted majority.

If you go this route, also include classification performance in your writeup along with
train/test timing.

• The right way to implement the AveragePerceptronClassifier is to extend the basic
PerceptronClassifier class and only alter the train method. For extra credit, imple-
ment it this way. To do this, you must minimize the amount of repeated code and maximize
the amount of shared code.

• Find another dataset with at least 5 features and 500 examples and provide a comparison of
your perceptron algorithms on it.

When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.). Your two perceptron
classes should follow the package structure and be inside the ml.classifiers package/directory.

Your experiments file with the answers/graphs from Section should also be added to your repo.

Submit your assignment on gradescope by providing the url for your github repo. Make sure that
you have pushed the latest version of your code, etc. to the repo before you submit.
Note that you may submit as many times as you want up until the assignment is due.

6



Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

• Your name (or names) and the assignment number should be at the top of each file

• Each class and method should have an appropriate doctsring

• If anything is complicated, it should include some comments.

There are many possible ways to approach this problem, which makes code style and comments
very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

7


