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Another set data structure s Binary heap

Idea: store data in a collection of arrays

o array i has size 2/
an array is either full or empty (never partially full)
each array is stored in sorted order

no relationship between arrays

Binary array set

A binary tree where the value of a parent is greater
than or equal to the value of its children

Additional restriction: all levels of the tree are
complete except the last

Max heap vs. min heap
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Binary heap - operations
Max - return the largest element in the set

ExtractMax — Return and remove the largest element in the
set

Insert(val) — insert val into the set

IncreaseElement(x, val) — increase the value of element x
to val

BuildHeap(A) — build a heap from an array of elements

Binary heap representations
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Heapify
Assume left and right children are heaps,
turn current node into a valid heap

HEeAPIFY(4,i) aka “sink”

1 — LEFT(i)

7« RIGHT(3)

largest «— i

if | < heap-size[A] and A[l] > A[i]
largest « 1

if 7 < heap-size[A] and A[r] > Allargest]
largest —r

if largest # i
swap A[i] and Allargest]
HEAPIFY(A, largest)
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Heapify
Assume left and right children are heaps,
turn current set into a valid heap

HEAPIFY(4, 1)

1 — LEFT(¢)

7« RIGHT(3)

largest «— i

if | < heap-size[A] and A[l] > A[i]
largest « 1

if 7 < heap-size[A] and A[r] > Allargest]
largest —r

if largest # i
swap A[i] and Allargest]
HEAPIFY(A, largest)

find out which is
largest: current,
left of right
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Heapify
Assume left and right children are heaps,
turn current set into a valid heap

HEAPIFY(A, 1)

1 — LEFT(7)

7« RIGHT(i)

largest «— i

if I < heap-size[A] and A[l] > Al4]
largest «— 1

if 7 < heap-size[A] and A[r] > Allargest]
largest «— r

if largest # i if a child is
swap A[i] and Allargest] larger, swap and
HEAPIFY(A, largest) recurse
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Heapify

s

123 4567891

45d

HEAPIFY(A, §)

1 LerT(i)

7 RicT(i)

largest — i

if 1< heap-size[A] and Al] > Ali]

argest —

if 7 < heap-size[A] and Afr] > Allargest]
largest —r

if largest £ 1
swap Ali] and Allargest]
HEAPIFY(A, largest)

Seowaoos e

9 10
Heapify Heapify
12 3 4567 89 10 12 3 4567 89 10
HEAPIFY(A, ) HEAPIFY(A, )
1 1+ Lerr(i) 1 1+ Lerr(i)
O (83 ORI
3 largest —i / 3 largest —i
4 if 1 < heap-size[A] and A[l] > A[i] 4 if 1 < heap-size[A] and A[l] > A[i]
o e e 5 largest — | ° e e 5 largest — |
6 if r < heap-size[A] and Afr] > Allargest] 6 if r < heap-size[A] and Afr] > Allargest]
7 largest «—r 7 largest 1
8 if largest #1 8 if largest #1
9 swap Ali] and Allargest] 9 swap Ali] and Allargest]
10 HEAPIFY(A, largest) o 10 HEeAPIFY(A, largest)
11 12
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Heapify

ST

123 4567891

HEAPIFY(A, 1)

1 Lerr(i)

7 RicT(i)

largest —

if 1< heap-size[A] and Al] > Ali]
argest —

if 7 < heap-size[A] and Afr] > Allargest]

O (o)
@O ® ®

largest — r

if largest £ 1
swap Ali] and Allargest]
HEAPIFY(, largest)

S0 o)~ o en ot

Heapify

BT T

123 4567891

HEAPIFY(A, §)

1 Lerr(i)

7 RicT(i)

largest —

if 1< heap-size[A] and Al] > Ali]

argest —

if 7 < heap-size[A] and Afr] > Allargest]
largest —r

if largest £ 1
swap Ali] and Allargest]
HEAPIFY(4, largest)

B e
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Heapify

eofofe [T e[S e T T T T T

12 3 4567891

b b

HEAPIFY(A. 1)

1 Lerr(i)

r — RicHT(i)

largest — i

if 1 < heap-size[A] and All] > Ali
largest —

if 7 < heap-size[A] and Afr] > Allargest]
largest «— .

T largest 71
swap Ali] and Allargest]
HeAPIFY(4, largest)

Soouoaswe—

Heapify

eofofs [T e[S e T T T T T

12 3 4567891

b b

HEAPIFY(A, 1)

1 Lerr(i)

r — RicHT(i)

largest — i

if 1 < heap-size[A] and All] > Ali
largest —

if 7 < heap-size[A] and Afr] > Allargest]
largest « .

T largest 71
swap Ali] and Allargest]
HeAPIFY(4, largest)

Sooluoaswe—
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Running time of Heapify

O(height of the tree)

What is the height of the tree?
« Complete binary tree, except for the last level

HearIry(4,1)

Binary heap - operations
Max - return the largest element in the set

ExtractMax — Return and remove the largest element in the
set

Insert(val) — insert val into the set

2 < 1 e T IncreaseElement(x, val) — increase the value of element x
- 2 v Rom(y to val
argest o i
if eap-size[A] and All] > Ali]
h<log,n o . .
§ 17 < hoap-size 4] nd Al > Allorgest BuildHeap(A) — build a heap from an array of elements
§ if lorgost £
O(log n) o e et
21 22
Max ExtractMax

What is the largest element in the set?

Return A[1]

[1e[14[10] 8] 7[ 9] 3] 2[ 4] 1] ]|

12 3 456789 1

Return and remove the largest element in the set

b
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ExtractMax :

Return and remove the largest element in the set

0@ eacb ©

ExtractMax :

Return and remove the largest element in the set

25

30

ExtractMax

Return and remove the largest element in the set

IncreaseElement (aka swim up)

Increase the value of element x to val

B

31
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IncreaseElement :

Increase the value of element x to val

@00

IncreaseElement :

Increase the value of element x to val

&
bbb

35
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IncreaseElement

Increase the value of element x to val

&
b

IncreaseElement

Increase the value of element x to val

bod
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IncreaseElement :

Increase the value of element x to val

Insert :
Insert val into the set

@ Runtime? @
(1] (10 ; .
/ e O ONNNG
@ D@ O &
(& (O © G
Ol Qé g)
<D
39 44
Insert s Insert s
Insert val into the set Insert val into the set
(1)
(14] (10

bbb

45
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Insert $
Insert val into the set
O(log n)

Building a heap :

Can we build a heap using the functions we
have so far?

o Max

o ExtractMax

o Insert(val)

o IncreaseElement(x, val)

47

50

Building a heap

For each element x in array:
insert(x)

BuiLD-HEAP1(A4)

1 copy Ato B

2 heap-size[A] — 0

3 for i < 1 to length[B]

4 INSERT(4, Bli])

Running time of BuildHeap1

n calls to Insert — O(n log n)

Can we do better?

Q-b(ég #C@)-}

51
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Building a heap: take 2

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
2 for i «— [(length)[A]/2]tol
3 HEAPIFY(4, 1)

Start with n/2 “one-node” heaps
call Heapify on element n/2-1, n/2-2, n/2-3 ...

all children have smaller indices

building from the bottom up, makes sure that all the
children are heaps

BuiLp-HEAP2(A)

1 heap-size[A] — (length)[A]
2 for i — |(length)[A]/2]tol
3 HEAPIFY(A, i)

TR A A
12 3 456789 1

&
bob

53 54
BuiLp-HEAP2(A) BuiLD-HEAP2(A)
1 heap-size[A] — (length)[A] 1 heap-size[A] — (length)[A]
heapify 2 for i « [(length)[A]/2]tol heapify 2 for i« [(length)[A]/2]tol | §
3 HEAPIFY(A, ) 3 HEAPIFY(A, )
T T O O T T O O
123456789 10 123456789 10
55 56
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BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
heapify 2 for i — |(length)[A]/2]tol | 22

3 HEAPIFY(A, i)

_

123 456789 1

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
heapify 2 for i — |(length)[A]/2]tol

3 HEAPIFY(A, i)

—

123 456789 1

57 58
BuiLp-HEAP2(A) BuiLD-HEAP2(A)
1 heap-size[A] — (length)[A] 1 heap-size[A] — (length)[A]
heapify 2 for i « |(length)[A]/2]tol heapify 2 for i — |(length)[4]/2]tol | §
3 HEAPIFY(A, i) 3 HEAPIFY(A, i)
1723 456789 1 1723 456789 1
() ()
D (1) 3 (1)
W © © & W © © &
@ OO @ OO
59 60
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BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
heapify 2 for i — |(length)[A]/2)tol

3 HEAPIFY(A, i)

123 456789 1

BuiLD-HEAP2(A)

1 heap-size[A] — (length)[A]
heapify 2 for i — |(length)[A]/2]tol | 22

3 HEAPIFY(A, i)

—

123 456789 1

61 62
BuiLp-HEAP2(A)
-~ 1 heap-size[A] — (Iength) 4] . . .
capiy R tielly el Running time of BuildHeap2 :
— n/2 calls to Heap|fy - O(n |og n)
1723 456789 1
(16) Can we get a tighter bound?
Q @ BuiLD-HEAP2(A)
1 heap-size[A] — (length)[A]
o o o o 2 for i — |(length)[A]/2]tol
3 HEAPIFY(A, )
63 66
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Running time of BuildHeap2 Running time of BuildHeap2 |::
®) 700 = 52/00d)
2
D (10) :
all nodes at the
B DO D SR,
Qé éD <)
How many nodes are at level d?  2d
67 68
Nodes at height h Running time of BuildHeap2 | ::
rn= 3% 5 o
~orzf )
h < ceil(n/2"") nodes
~o[rz]
h=2 < ceil(n/8) nodes _ O("Zfﬂ,ih]
h=1 < ceil(n/4) nodes w2
h=0 < ceil(n/2) nodes =06(n)

69

70
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Binary heaps

Binary heap
Procedure (worst-case)
BuILD-HEAP O(n)
INSERT O(logn)
MAXIMUM o(1)
EXTRAC-MAX ©(logn)
UNION
INCREASE-ELEMENT  O(logn)
DELETE ©(logn)

(adapted from Figure 19.1, pg. 456 [1])

Mergeable heaps

Binary heap
Procedure (worst-case) - Mergeable heaps support
BuiLp-HEAP O(n) the union operation
INSERT O(logn)
MAXIMUM (1) - Allows us to combine two
ExTRAC-MAX 6(logn) heaps to get a single
UNION hea
INCREASE-ELEMENT  O(logn) P
DELETE ©(logn)

- Union runtime for binary

(adapted from Figure 19.1, pg. 456 [1]) heaps?

74

Union for binary heaps

Binary heap

Procedure (worst-case)

BuiLD-HEAP O(n)

INSERT ©(logn)

MAXIMUM o(1)

EXTRAC-MAX ©O(logn)

Union ;:r?ncatelrgtgktjhaarrays and
INCREASE-ELEMENT ~ ©(logn) en call Bulld-fieap
DELETE O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Linked-list heap
———a——a

Store the elements in an unordered doubly linked list

e Insert:

o Max:

e Extract-Max:
Increase:

e Union:

76

14
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Linked-list heap
—a—E -

Linked-list heap

Binary heap Linked-list
. Inked-list
Store the elements in an unordered doubly linked list Procedure (worst-case) ~_—TZT7
BuiLD-HEAP O(n) O(n)
INSERT ©(logn) o(1)
e Insert: add to the end/beginning MAXIMUM o(1) o(n)
. i i EXTRAC-MAX O(logn) o(n)
o Max: search through the linked list &3
ExtractMax:  search and delete Uniox O(n) om
° @ . INCREASE-ELEMENT  ©(logn) (1)
o Increase: increase value DELETE O(logn) o(1)
e Union: concatenate linked lists (adapted from Figure 19.1, pg. 456 [1])
Faster Union, Increase, Insert and Delete... but slower Max operations
78 79
Adapted from: Bo B«
Kevin Wayne fo) R .
Binomial Tree Binomial Tree
Bx: a binomial tree Bk1 with the Number of nodes with
addition c»_f a Ie_ft child with respect to k?
another binomial tree Bk-1
N(Bo) =1
N(Bi) = 2 N(By.1) = 2¢
N
Bi B Bz Bs B« I
°
Bi B Bz Bs B«

80

81
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Binomial Tree

Height?

H(Bo) = 1
H(BW) =1+ H(Bx1) = k

g

[}
Bo

Binomial Tree

Degree of root node?

k, each time we add another binomial tree

82

Binomial Tree

What are the children
of the root?

k binomial trees:
Bk-1, Bk, ..., Bo

g

Bo

Binomial Tree

Why is it called a binomial tree?

84

85
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Binomial Tree

By has m nodes at depth i.

Another set data structure:
recap

Idea: store data in a collection of arrays

array i has size 2/
an array is either full or empty (never partially full)

each array is stored in sorted order
no relationship between arrays

86 87
Another set data structure: Binomial Heap
recap Binomial heap
Sequence of binomial trees that satisfy binomial heap property:
Which arrays are full and empty are based on the number of elements each tree is min-heap ordere.d
« specifically, binary representation of the number of elements top level: full or empty binomial tree of order k
« 4items = 100 = A2-full, A1-empty, Ao-empty which are empty or full is based on the number of elements
» 11items = 1011 = As-full, Ae-empty, As-full, Ao-full
Ao [5]
A [4,8]
Az empty
A3 [2,6,9, 12, 13, 16, 20, 25]
Lookup: binary search through each array
» Worst case runtime?
B1
89

88
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Binomial Heap

Ao: [18]

A [3,7)

Az: empty

As: empty

A4 [6, 8,29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55]

Binomial Heap: Properties

How many heaps?

O(log n) — binary number representation

90 91
Binomial Heap: Properties i Binomial Heap: Properties i
Where is the max/min? : Runtime of max/min? :
Must be one of the O(log n)
roots of the heaps

92 93
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Binomial Heap: Properties
Height?
logz n

- largest tree = Biogn
- height of that tree is log n

Binomial Heap: Union i
How can we merge two binomial tree heaps
of the same size (2k)?

connect roots of H' and H"
choose smaller key to be root of H

Runtime? ~ O(1) 0)
® @ @© @
@ @ @ @ @
® @ @ @
® -

94

95

Binomial Heap: Union

Binomial Heap: Union

Go through each tree size starting at 0 and merge as
we go

[€anC]
€]

T

+
How can we combine/merge binomial 111
heaps (i.e. a combination of binomial 100 1
tree heaps)? 19+7=26 + 00 11
96 97

19
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Binomial Heap: Union Binomial Heap: Union I
i ® i ®
3 " 3 [8]°
+ ® + ®
98 99
oo ¢ ot|ol
ir@ : j; ®
@ @
+ SRR ¢!
! !
100 101

20
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102

103

Binomial Heap: Union

Analogous to binary addition

Running time?
u Proportional to number of trees in root lists 2 O(log, N)
u O(log N)

o -

o o =

a0 -
-
-

19+7=26 +

Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: Bk consists of
binomial trees:

By1, Bk2, ..., Bo

104

105
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Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
m Find root x with min key in root list of H, and delete
= H'« broken binomial trees
® H <« Union(H', H)

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
® Find root x with min key in root list of H, and delete
= H'« broken binomial trees
® H « Union(H', H)

Running time?

O(log N)

106 107
Fibonacci Heaps
HeapS Similar to binomial heap
« A Fibonacci heap consists of a sequence of heaps
. . More flexible
Binary heap  Binomial heap « Heaps do not have to be binomial trees

Procedure (worst-case)  (worst-case) i
BuILD-HEAP o(n) 6(n) More complicated ©
INSERT O(logn) O(logn) Min [H]
MAXIMUM o(1) O(logn)
EXTRAC-MAX ©O(logn) ©(logn)
UNION O(n) O(logn)
INCREASE-ELEMENT ~ ©(logn) O(logn) @ @ 0 @ c
DELETE O(logn) ©(logn)

(adapted from Figure 19.1, pg. 456 [1])

@0 0600

114

115
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Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)
BuiLp-HEAP O(n) O(n) O(n)
INSERT ©O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) e(1)
EXTRAC-MAX O(logn) ©(logn) O(logn)
UNION O(n) ©(logn) e(1)
INCREASE-ELEMENT (log n) O(logn) e(1)
DELETE ©O(logn) ©(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Should you always use a Fibonacci heap?

Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)
BuiLp-HEAP O(n) O(n) O(n)
INSERT ©O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) e(1)
EXTRAC-MAX ©O(logn) ©(logn) O(logn)
UNION O(n) ©(logn) e(1)
INCREASE-ELEMENT (log n) O(logn) e(1)
DELETE ©O(logn) ©(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

+ Extract-Max and Delete are O(n) worst case
+ Constants can be large on some of the operations
« Complicated to implement

116
Heaps
Binary heap Binomial heap Fibonacci heap

Procedure (worst-case)  (worst-case) (amortized)
BuILD-HEAP O(n) ©(n) O(n) |
INSERT O(log n) O(logn) o)
MAXIMUM (1) O(logn) o(1)
EXTRAC-MAX ©(log n) ©(logn) Ologn) ]

NION O(n) ©(logn) o)
INCREASE-ELEMENT ~ ©(logn) ©(logn) e(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Can we do better?

118

117
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