

1

| Medians |
| :--- |
| The median of a set of numbers is the number such that |
| half of the numbers are larger and half smaller |
| A $=[50,12,1,97,30]$ |
| How might we calculate the median of a set? |
| Sort the numbers, then pick the $\mathrm{n} / 2$ element |
| $\mathrm{A}=[1,12,30,50,97]$ |
| runtime? |

3


2

| Medians |
| :--- |
| The median of a set of numbers is the number such that |
| half of the numbers are larger and half smaller |
| $A=[50,12,1,97,30]$ |
| How might we calculate the median of a set? |
| Sort the numbers, then pick the $\mathrm{n} / 2$ element |
| $\mathrm{A}=[1,12,30,50,97]$ |
| $\Theta(\mathrm{n} \mathrm{log} \mathrm{n})$ |

4

| Selection |  |
| :---: | :---: |
| More general problem: <br> find the $k$-th smallest element in an array <br> - i.e. element where exactly k -1 things are smaller than it <br> - aka the "selection" problem <br> - can use this to find the median if we want |  |
| Can we solve this in a similar way? <br> - Yes, sort the data and take the kth element <br> - $\Theta(n \log n)$ |  |

5


7

## Can we do better?

Are we doing more work than we need to?

To get the k-th element (or the median) by sorting, we're finding all the k-th elements at once

We just want the one!

Often when you find yourself doing more work than you need to, there is a faster way (though not always)

6

| Partition | $\because: \%$ $\because: \%$ $\because: \%$ $\because: \%$ |
| :---: | :---: |
| Partition takes $\Theta(n)$ time and performs a similar operation |  |
| given an elemen array into three $\begin{aligned} \bullet & <A[q] \\ \bullet & =A[q] \\ \bullet & >A[q] \end{aligned}$ | the |
| Ideas? |  |

8

| An example <br> We're looking for the $5^{\text {th }}$ smallest |  |
| :---: | :---: |
| $5234917213418532165$ <br> If we called partition, what would be the in three sets? $\begin{aligned} & <5: \\ & =5: \\ & >5: \end{aligned}$ |  |

9


11

## An example

We're looking for the $5^{\text {th }}$ smallest
5234917213418532165
< 5: 221321
= 5: 555
Does this help us?
> 5: 3491734186

10


12


13



14


16


17

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
57148326



19

## Selection(A, 3, 1, 8)

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 4 & 3 & 2 & 6 & 8 & 7\end{array}$
$\uparrow$
relq $=6-1+1=6$

Selection(A, k, p, r)
$q \leftarrow$ Partition $(A, p, r)$ relq $=q-p+1$ if $k=$ relq
Return A[q]
Return A[q]
else if $k$ < relq
else if $k<$ relq
Selection(A, $k, p, q-1)$
else // k> relq
Selection(A, k-relq, q+1, r)
21

| Selection(A, 3, 1, 8) |  |
| :---: | :---: |
|  | Selection(A, k, p, r) <br> $q \leftarrow \operatorname{Partition}(A, p, r)$ <br> relq $=q-p+1$ <br> if $k=$ relq <br> Return A[q] <br> else if $k$ < relq <br> Selection(A, k, p, q-1) <br> else // k > relq <br> Selection(A, k-relq, $q+1, r$ ) |

22

Selection(A, 3, 1, 5)

> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 3 | 5 | 6 | 8 | 7 |
|  | 1 |  |  |  |  |  |  |
|  | relq $=2-1$ |  |  |  |  |  | $=2$ |

Selection(A, k, p, r)
$q \leftarrow$ Partition $(A, p, r)$
relq $=q-p+1$
if $k=$ relq
Return $\mathrm{A}[\mathrm{q}]$
else if $k<r e l q$
Selection(A, k, p, q-1) else // k > relq Selection(A, k-relq, q+1, r)

24


23


25

| Selection(A, $1,3,5)$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| 1 | 2 | 4 | 3 | 5 | 6 | 8 | 7 |  |

26

Selection(A, 1, 3, 4)
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 4 & 3 & 5 & 6 & 8 & 7\end{array}$
$\mathrm{q} \leftarrow$ Partition(A,p,r)
relq $=q-p+1$
if $k=$ relq
Return A[q]
else if $k$ < relq
Selection(A, k, p, q-1) else // k > relq Selection(A, k-relq, q+1, r)

$\because: 8$
: : : :
-日:
:0:
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
12435687
-

Selection(A, k, p, r)

| $\begin{array}{llllllll} \text { Selection(A, } 1, & 3, & 4) \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 8 & 7 \end{array}$ |  |
| :---: | :---: |
|  | Selection(A, k, p, r) <br> $\mathrm{q} \leftarrow$ Partition(A, p,r) <br> relq $=q-p+1$ <br> if $k=$ relq <br> Return A[q] <br> else if $k<$ relq <br> Selection(A, k, p, q-1) <br> else // k > relq <br> Selection(A, k-relq, $q+1$, r) |

30

## Running time of Selection?

Best case?
We get lucky and the element at the end of the list is the kth smallest element!

One call to partition: $\theta(\mathrm{n})$

| Selection(A, 1, 3, 4)$\text { relq }=3-3+1=1$ |  |
| :---: | :---: |
|  | ```Selection(A, k, p, r) \(\mathrm{q} \leftarrow\) Partition(A,p,r) relq \(=q-p+1\) if \(k=\) relq Return A[q] else if \(k\) < relq Selection(A, k, p, q-1) else // k > relq Selection(A, k-relq, q+1, r)``` |

31


33


34
4

## 

| Running time of RSelection? |  |
| :---: | :---: |
| Best case <br> - $\theta(\mathrm{n})$ <br> Worst case <br> - Still $\theta\left(n^{2}\right)$ <br> - As with Quicksort, we can get unlucky Average case? |  |

36


35


37

| Average case |
| :--- |
| We'll call a partition "good" if the pivot falls within within the |
| 25th and $75^{\text {th }}$ percentile |
| - a good" partition throws away at least a quarter of the data |
| - Or, each of the partitions contains at least 25\% of the data |
| What is the probability of a "good" partition? |
| Half of the elements lie within this range and half outside, |
| so $50 \%$ chance |

38

## Average case

On average, how many times will Partition need to be called before we get a good partition?
Let $E$ be the number of times Recurrence:

$$
\begin{aligned}
E & =1+\frac{1}{2} E \quad \begin{array}{l}
\begin{array}{l}
\text { half the time we get a good } \\
\text { partition on the first try and half } \\
\text { of the time, we have to try agair }
\end{array} \\
\\
\end{array}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \\
& =2
\end{aligned}
$$

40


39


41

| Average case <br> If on average we can get a "good" partition ever other time, what is the recurrence? <br> - recall the pivot of a "good" partition falls in the $25^{\text {th }}$ and $75^{\text {th }}$ percentile |
| :---: |

43

| Which is? $T(n)=T(3 / 4 n)+\theta(n)$ |  |
| :---: | :---: |

45


44

$$
\begin{aligned}
& T(n)=T(3 / 4 n)+\Theta(n) \\
& \text { if } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \text { for } \varepsilon>0 \text {, then } T(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \text {, then } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { if } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { for } \varepsilon>0 \text { and } a f(n / b) \leq c f(n) \text { for } c<1 \\
& \text { then } T(n)=\Theta(f(n)) \\
& \begin{array}{ll}
\mathrm{a}=1 & n^{\log _{b} a}=n^{\log _{4 / 3} 1} \\
\mathrm{~b}=4 / 3
\end{array} \\
& f(n)=n
\end{aligned}
$$

s $\mathrm{n}=O\left(n^{0-\varepsilon}\right)$ ?
Case 3: $\Theta(n)$
is $\mathrm{n}=\Theta\left(n^{0}\right)$ ? Average case running time!
is $\mathrm{n}=\Omega\left(n^{0+\varepsilon}\right)$ ?

| Selection |  |
| :---: | :---: |
| Worst case: $\Theta\left(\mathrm{n}^{2}\right)$ |  |
| Best case: $\Theta(n)$ |  |
| Average case: $\Theta(\mathrm{n})$ |  |

47

$$
T(n)=T(p n)+f(n)
$$

| $T(n)=T(p n)+f(n)$ |  |
| :---: | :---: |
| for $0<p<1$ and |  |
| $f(n) \notin \Theta(1)$ | if $f(n)=O\left({ }^{\text {logese-s }}\right)$ for $\varepsilon>0$, |
|  | if $f(n)=\Theta\left(n^{\text {loga }}\right.$ a $)$, hen $T(n)$ |
|  |  |
|  | then $T(n)=\Theta(f(n))$ |
| $a=1$ | $n^{\log _{b} a}=n^{\log _{l_{l p} 1} 1}$ |
| $b=1 / p$ |  |
| $f(n)=f(n)$ | $=n^{0}$ |

$$
\text { for } 0<p<1 \text { and }
$$

$$
f(n) \notin \Theta(1)
$$

, $f(n)=\Omega\left(n^{\log _{g_{0}}+\varepsilon}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$ $n^{\log _{b} a}=n^{\log _{l_{p} p}}$
$f(n)=f(n)$
$=n^{0}$

Case 3: $\Theta(f(n))$


Notice a trend?

$$
\begin{array}{ll}
T(n)=T(n / 2)+\Theta(n) & \Theta(\mathrm{n}) \\
T(n)=T(3 / 4 n)+\Theta(n) & \Theta(\mathrm{n})
\end{array}
$$

Divide and conquer strategy
Split data in half and recurse on two halves

Assume it works! How do we get the answer to the entire problem?

- Often have to do a bit of extra work
- Be careful about solutions that could span/combine the two halves


51

53



52


54

| Ordered Set |  |
| :---: | :---: |
| insert |  |
| remove |  |
| contains |  |
| next/prev (successor/predecessor) |  |

55

| Priority Queue |  |
| :---: | :---: |
| insert |  |
| remove |  |
| $\min /$ max |  |


| Unordered Set | $\because \because:$ $\because 8.8$ $\because \because \%$ $\because \because \%$ |
| :---: | :---: |
| insert |  |
| remove |  |
| contains |  |

57

