

1

2

3

High-level approaches

Algorithm tools

- Divide and conquer
- $=$ assume that we have a solver, but that can only solve sub-
problems
define the current problem with respect to smaller problems
- Key: sub-problems should be non-overlapping

Dynamic programming

- Same as above
- Key difference: sub-problems are overlapping
- Once you have this recursive relationship:
® figure out the data structure to store sub-problem solutions
- work from bottom up

Data structures
Min/max? - heap \square binomial heap Fast insert/delete at positions? - linked list Others \square stacks/queues \square extensible data structures \square balanced BSTs \square disjoint sets

9

10

11

Proof by induction
State what you're trying to prove
We show that XXX using proof by induction
Prove base case
State the inductive hypothesis
Inductive proof
State what you want to show (may include a variable
change, es,
change, e.g., k in instead of n)
Show a step by step derivation from the left hand side resulting in the right hand side. Give justifications for
steps that are non-trivial steps that are non-trivial

15

Recurrences
$T(n)=2 T(n / 3)+d$
$T(n)=a T(n / b)+f(n)$
if $f(n)=O\left(n^{\text {Doese-e }}\right)$ for $\varepsilon>0$, then $T(n)=\Theta\left(n^{\text {Deses }}\right)$
if $f(n)=\Theta\left(n^{\text {mese }} 9\right)$, then $T(n)=\Theta\left(n^{\text {点as }} \log n\right)$
if $f(n)=\Omega\left(n^{\text {losecsect }}\right)$ for $\varepsilon>0$ and $a f(n / b) \leq c f(n)$ for $c<1$
then $T(n)=\Theta(f(n))$
$T(n)=T(n-1)+\log n$

16

17
DP advice
Write the recursive definition
What is the input/output to the problem?
What would a solution look like? What are the options for
picking the first component of a solution?
Assume you have a solver for subproblems. How can you
combine the first decision with answer to subproblem.
Define DP structure: what are subproblems indexed by?
State how to fill in the table (including base cases and where
the answer is)
18

18

