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Flow graph/networks
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Flow network
¤ directed, weighted graph (V, E)
¤ positive edge weights indicating the “capacity” (generally, 

assume integers)

¤ contains a single source s Î V with no incoming edges
¤ contains a single sink/target t Î V with no outgoing edges
¤ every vertex is on a path from s to t
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Flow constraints

in-flow = out-flow for every vertex (except s, t)

flow along an edge cannot exceed the edge capacity

flows are positive
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Another flow problem
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How much water flow 
can we continually 
send from s to t?
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Another flow problem
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Max flow problem

Given a flow network: what is the maximum flow we 
can send from s to t that meet the flow constraints?
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Application: bipartite graph matching

Bipartite graph – a graph where every vertex can be partitioned into 
two sets X and Y such that all edges connect a vertex u Î X and a 
vertex v Î Y
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at 
most once in M
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Application: bipartite graph matching

A matching can be thought of as pairing the vertices
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Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite 
graph
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Where might this 
problem come up?

- CS department has n courses 
and m faculty

- Every instructor can teach 
some of the courses

- What course should each 
person teach?

- Anytime we want to match n 
things with m, but not all 
things can match

faculty

courses
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Application: bipartite graph matching

Setup as a flow problem:
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Application: bipartite graph matching

Setup as a flow problem:
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edge weights?
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Application: bipartite graph matching

Setup as a flow problem:
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all edge weights are 1

18

Application: bipartite graph matching

Setup as a flow problem:

A

B

C

E

D

F

G

S T

after we find the flow, how do we find the matching?
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Application: bipartite graph matching

Setup as a flow problem:
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match those nodes with flow between them
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Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)

n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)
¤ Edmunds-Karp: O(V E2)

¤ Preflow-push: O(V3)
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Application: bipartite graph matching

Run-time?
Cost to build the flow?

¤ O(E)
n each existing edge gets a capacity of 1
n introduce V new edges (to and from s and t)

n V is O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
¤ Basic Ford-Fulkerson: O(max-flow * E)

n max-flow = O(V)
n O(V E)
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Application: bipartite graph matching

Bipartite matching problem: find the largest matching in a bipartite 
graph
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- CS department has n courses 
and m faculty

- Every instructor can teach some 
of the courses

- What course should each person 
teach?

- Each faculty can teach at most 3 
courses a semester?

Change the s edge weights 
(representing faculty) to 3
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Application: bipartite graph matching
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Change the s edge weights 
(representing faculty) to 3

All others are capacity 1

faculty

courses
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Survey Design

Design a survey with the following requirements:
¤Design survey asking n consumers about m products

¤Can only survey consumer about a product if they own it
¤Question consumers about at most q products

¤ Each product should be surveyed at most s times

¤Maximize the number of surveys/questions asked

How can we do this?
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Survey Design
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Survey design

Is it correct?
¤ Each of the comments above the flow graph match the 

problem constraints

¤max-flow finds the maximum matching, given the 
problem constraints

What is the run-time?
¤ Basic Ford-Fulkerson: O(max-flow * E)

¤ Edmunds-Karp: O(V E2)

¤ Preflow-push: O(V3)
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Two paths are edge-disjoint if they have no edge in 
common
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Two paths are edge-disjoint if they have no edge in 
common

Edge Disjoint Paths
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Given a directed graph G = (V, E) and two nodes s and 
t, find the max number of edge-disjoint paths from s to t
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Why might this be useful?
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Given a directed graph G = (V, E) and two nodes s and 
t, find the max number of edge-disjoint paths from s to t

Why might this be useful?
¤ edges are unique resources (e.g. communications, 

transportation, etc.)
¤ how many concurrent (non-conflicting) paths do we have 

from s to t

Edge Disjoint Paths Problem
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Algorithm ideas?

Edge Disjoint Paths
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Max flow formulation:  assign unit capacity to every edge

Edge Disjoint Paths
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What does the max flow represent?
Why?

34



4/9/24

9

Max flow formulation:  assign unit capacity to every edge

Edge Disjoint Paths
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- max-flow = maximum number of disjoint paths
- correctness:

- each edge can have at most flow = 1, so can 
only be traversed once

- therefore, each unit out of s represents a 
separate path to t
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Max-flow variations

What if we have multiple sources and multiple sinks 
(e.g. the USSR train problem has multiple sinks)?
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Max-flow variations

Create a new source and sink and connect up with 
infinite capacities…
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex
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What is the max-flow now?
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex
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Max-flow variations

Vertex capacities: in addition to having edge 
capacities we can also restrict the amount of flow 
through each vertex
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How can we solve this problem?
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Max-flow variations

For each vertex v
- create a new node v’
- create an edge with the vertex capacity from v to v’

- move all outgoing edges from v to v’
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Two paths are independent if they have no vertices in 
common
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Two paths are independent if they have no vertices in 
common
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Find the maximum number of independent paths
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Ideas?
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Max flow formulation:  
- assign unit capacity to every edge (though any value would work)
- assign unit capacity to every vertex

maximum independent path
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Same idea as the maximum edge-disjoint paths, 
but now we also constrain the vertices
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