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MAX FLOW
David Kauchak
CS 140 – Spring 2023
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Admin

Assignment 9

Checkpoint 2 (DP through graphs… will not include 
flow networks)

Mentor hour update:
¤No more Saturday hours for now

¤Additional hours Friday: 5:30-7:30pm
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Checkpoint 2

2 pages of notes

2/15 through 4/2 (will not include network flow)

Will make some practice problems soon
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Checkpoint 2 topics

greedy algorithms
- proving correctness
- developing algorithms
- comparing vs. dynamic programming

hashtables
- collision resolution by chaining
- open addressing
- hash functions

Dynamic programming
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Checkpoint 2 topics

graphs
- different types of graphs

- terminology

- representing graphs (adjacency list/matrix)

graph algorithms
- Traversal: BFS, DFS

- MST: Prim’s, Kruskal’s

- Topological sort
- Connectedness

- Detecting cycles
- Single-source shortest paths: Dijskra’s, Bellman-Ford

- All-pairs shortest paths: Floyd-Warshal, Johnson’s

- Run-time, why the work, when you can apply them

graph misc

- min-cut property (proving correctness of MST algorithms)
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Student networking

You decide to create your own computer network:
¤ You get three of your friends and string some network cables

¤ Because of capacity (due to cable type, distance, computer, etc) you 
can only send a certain amount of data to each person

¤ If edges denote capacity, what is the maximum throughput you can 
you send from S to T?
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Student networking
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10/30 30 units

You decide to create your own campus network:
¤ You get three of your friends and string some network cables

¤ Because of capacity (due to cable type, distance, computer, etc) you 
can only send a certain amount of data to each person

¤ If edges denote capacity, what is the maximum throughput you can 
you send from S to T?
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Another flow problem
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How much water flow 
can we continually 
send from s to t?

8
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Another flow problem
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14 units
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Flow graph/networks
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Flow network
¤ directed, weighted graph (V, E)
¤ positive edge weights indicating the “capacity” (generally, 

assume integers)

¤ contains a single source s Î V with no incoming edges
¤ contains a single sink/target t Î V with no outgoing edges
¤ every vertex is on a path from s to t
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Flow constraints

in-flow = out-flow for every vertex (except s, t)

flow along an edge cannot exceed the edge capacity

flows are positive
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Max flow problem

Given a flow network: what is the maximum flow we 
can send from s to t that meets the flow constraints?

S

A

B

T

20

20
10

10

30

13



4/4/24

4

Applications?

network flow
¤water, electricity, sewage, cellular…
¤ traffic/transportation capacity

bipartite matching

sports elimination

… 

14

Max flow origins

Rail networks of the Soviet Union in the 1950’s
The US wanted to know how quickly the Soviet Union could get 
supplies through its rail network to its satellite states in Eastern 
Europe.

In addition, the US wanted to know which rails it could destroy most 
easily to cut off the satellite states from the rest of the Soviet Union.

These two problems are closely related: solving the max flow 
problem also solves the min cut problem of figuring out the 
cheapest way to cut off the Soviet Union from its satellites.

Source:  lbackstrom, The Importance of Algorithms, at www.topcoder.com 
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Algorithm idea
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Algorithm idea
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send some flow down a path
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Algorithm idea
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send some flow down a path

Now what?

10
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Algorithm idea
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reroute some of the flow

Total flow?
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Algorithm idea
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Algorithm idea
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Algorithm idea
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send some flow down a path
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Algorithm idea
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send some flow down a path
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Algorithm idea
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send some flow down a path
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Algorithm idea
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reroute some of the flow
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Algorithm idea
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Are we done?
Is this the best we can do?
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Cuts

A cut is a partitioning of the vertices into two sets Ss and 
St = V-Ss
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Flow across cuts
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In flow graphs, we’re interested in cuts that separate s from t, 
that is s Î Ss and t Î St

29

Flow across cuts
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The flow “across” a cut is the total flow from nodes in Ss 
to nodes in St minus the total from nodes in St to Ss

What is the flow across this cut?
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Flow across cuts
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10+10-6 = 14

The flow “across” a cut is the total flow from nodes in Ss 
to nodes in St minus the total from nodes in St to Ss

31

Flow across cuts
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Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink

What do we know about the flow across the any such cut?
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Flow across cuts
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The flow across ANY such cut is the same and is the current 
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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4+10 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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4+6+4 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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10+10-6 = 14

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Flow across cuts
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The flow across ANY such cut is the same and is the current 
flow in the network

Why? Can you prove it?

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink

37

Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Inductively?

¨ every vertex is on a path from s to t
¨ in-flow = out-flow for every vertex (except s, t)

¨ flow along an edge cannot exceed the edge capacity
¨ flows are positive

38
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Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Base case: Ss = s

- Flow is total from from s to t: therefore the 
total flow out of s should be the flow

- All flow from s gets to t
- every vertex is on a path from s to t
- in-flow = out-flow

39

Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Inductive case: Consider moving a node x from St to Ss

Is the flow across the different partitions the same?

x

40

Flow across cuts

x

in-flow = out-flow

cut = left-inflow(x) – left-outflow(x) cut = right-outflow(x) – right-inflow(x)

left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x)

left-inflow(x) - left-outflow(x) = right-outflow(x) – right-inflow(x)

Inductive case: Consider moving a node x from St to Ss

41

Flow across cuts

The flow across ANY such cut is the same and is the current 
flow in the network

Consider any cut where s Î Ss and t Î St, i.e. the cut partitions 
the source from the sink
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Capacity of a cut
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The “capacity of a cut” is the maximum flow that we could 
send from nodes in Ss to nodes in St (i.e. across the cut)

How do we calculate the capacity?
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Capacity of a cut

S

A

B

T

10

910

4

2

C

D

6

10

10

8

Capacity is the sum of the edges from Ss to St 

10 + 9 = 19

The “capacity of a cut” is the maximum flow that we could 
send from nodes in Ss to nodes in St (i.e. across the cut)
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Capacity of a cut
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Why?

The “capacity of a cut” is the maximum flow that we could 
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St 
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Capacity of a cut

- Any more and we would violate the edge capacity 
constraint

- Any less and it would not be maximal, since we 
could simply increase the flow

The “capacity of a cut” is the maximum flow that we could 
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St 
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Max Power

https://www.youtube.com/watch?v=BSVms6cT9nk
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Maximum flow
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Are we done?
Is this the best we can do?

For any cut where s Î Ss and t Î St

¤ the flow across the cut is the same
¤ the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from Ss to St
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Maximum flow
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We can do no better than the minimum capacity cut! 

For any cut where s Î Ss and t Î St

¤ the flow across the cut is the same
¤ the maximum capacity (i.e. flow) across the cut is the sum 

of the capacities for edges from Ss to St
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Maximum flow
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What is the minimum capacity cut for this graph?

Capacity = 10 + 4

Is this the best we can do?

51

https://www.youtube.com/watch?v=BSVms6cT9nk
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Maximum flow
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What is the minimum capacity cut for this graph?

Capacity = 10 + 4

flow = minimum capacity, so we can do no better
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Algorithm idea
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send some flow down a path

How do we determine the 
path to send flow down?
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Algorithm idea
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send some flow down a path

Search for a path with 
remaining capacity from s to t
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Algorithm idea
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reroute some of the flow

How do we handle 
“rerouting” flow?
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Algorithm idea
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During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow
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Algorithm idea
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During the search, if an edge 
has some flow, we consider 
“reversing” some of that flow

reroute some of the flow
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The residual graph

The residual graph Gf is constructed from G

For each edge e in the original graph (G):
¤ if flow(e) < capacity(e)

n introduce an edge in Gf with capacity = capacity(e)-flow(e)
n this represents the remaining flow we can still push

¤ if flow(e) > 0
n introduce an edge in Gf in the opposite direction with 

capacity = flow(e)
n this represents the flow that we can reroute/reverse
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Algorithm idea
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s to t in Gf
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Algorithm idea

G

Gf
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s to t in Gf
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Algorithm idea

G
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Find a path from
s to t in Gf
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Algorithm idea
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None exist… done!
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Algorithm idea
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Algorithm idea

9
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Find a path from
s to t in Gf
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Algorithm idea

G

Gf

Find a path from
s to t in Gf
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Algorithm idea

G

Gf

Find a path from
s to t in Gf
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Algorithm idea

G

Gf

Find a path from
s to t in Gf
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Algorithm idea

G

Gf

DONE!
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Ford-Fulkerson

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges

   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along the path as possible
      Gf = residualGraph(G)

   return flow

a simple path contains no 
repeated vertices

69

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

74

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

- traverse the graph
- at most add 2 edges 

for original edge
- θ(V + E)

Can we simplify this expression?
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

- traverse the graph
- at most add 2 edges 

for original edge
- θ(V + E) = θ(E)
- (all nodes exists on 

paths from s to t)
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

- BFS or DFS
- O(V + E) = O(E)

77

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

- max-flow!
- increases ever iteration
- integer capacities, so 

integer increases

Can we bound the number of 
times the loop will execute?
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Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
   flow = 0 for all edges
   Gf = residualGraph(G)
   while a simple path exists from s to t in Gf

      send as much flow along path as possible
      Gf = residualGraph(G)
   return flow

- max-flow!
- increases ever iteration
- integer capacities, so 

integer increases

Overall runtime? O(max-flow * E)
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O(max-flow * E)

Can you construct a graph that could get this running time?
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Hint:
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?

S

A

B

T

2/100

2/1002/100

2/100

0/1

85

O(max-flow * E)

Can you construct a graph that could get this running time?
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O(max-flow * E)

Can you construct a graph that could get this running time?
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0/1

What is the problem here?  
Could we do better?
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Faster variants

Edmonds-Karp
¤ Select the shortest path (in number of edges) from s to t in Gf

n How can we do this?
n use BFS for search

¤ Running time: O(V E2)
n avoids issues like the one we just saw

n see the book for the proof
n or 

http://www.cs.cornell.edu/courses/CS4820/2011sp/handouts/e
dmondskarp.pdf

preflow-push (aka push-relabel) algorithms
¤ O(V3)
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Other variations…

http://en.wikipedia.org/wiki/Maximum_flow

http://akira.ruc.dk/~keld/teaching/algoritmedesign_

f03/Artikler/08/Goldberg88.pdf
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Network flow properties

If one of these is true then all are true (i.e. each 
implies the the others):

f is a maximum flow

Gf (residual graph) has no paths from s to t

|f| = minimum capacity cut

90

Handout
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How much water flow 
can we continually 
send from s to t?
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Calculate residual graph
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