MAX FLOW

4/4/24

Admin

Assignment 9

Checkpoint 2 (DP through graphs... will not include
flow networks)

Mentor hour update:
No more Saturday hours for now
Additional hours Friday: 5:30-7:30pm

Checkpoint 2
2 pages of notes
2/15 through 4/2 (will not include network flow)

Will make some practice problems soon

Checkpoint 2 topics

greedy algorithms
proving correctness
developing algorithms

comparing vs. dynamic programming

hashtables
llision resolution by chaini
open addressing

hash functions

Dynamic programming

4/4/24

Checkpoint 2 topics
[

graphs
different types of graphs
terminology

representing graphs (adjacency list/matrix)

graph algorithms
Traversal: BFS, DFS
MST: Prim's, Kruskal's

Topological sort
Comnectedness

Detecting cycles

Single-source shortest paths: Dijskra’s, Bellman-Ford
All-pairs shortest paths: Floyd-Warshal, Johnson's

Run-time, why the work, when you can apply them

graph misc

min-cut property (proving correciness of MST algorithms)

Student networking
[

You decide to create your own computer network:
You get three of your friends and string some network cables
Because of capacity (due to cable type, distance, computer, etc) you
can only send a certain amount of data to each person
If edges denote capacity, what is the maximum throughput you can
you send from S to T2

20 10

Student networking
=

You decide to create your own campus network:
You get three of your friends and string some network cables
Because of capacity (due to cable type, distance, computer, etc) you
can only send a certain amount of data to each person
If edges denote capacity, what is the maximum throughput you can
you send from S to T2

20/20

30 units

Another flow problem
o

How much water flow
can we continually
send from s to 12

4/4/24

Another flow problem

14 units

Flow graph/networks
o

Flow network
directed, weighted graph (V, E)
positive edge weights indicating the “capacity” (generally,
assume integers)

contains a single source s € V with no incoming edges
contains a single sink/target t € V with no outgoing edges
every vertex is on a path from s to t

20 10

20

9 10

Flow constraints Max flow problem
| |

in-flow = out-flow for every vertex (except s, t)

Given a flow network: what is the maximum flow we
flow along an edge cannot exceed the edge capacity can send from s to t that meets the flow constraintsg
flows are positive

20 10 20 10
10 10
20 20
12 13

4/4/24

Applications?
S

network flow

bipartite matching

sports elimination

water, electricity, sewage, cellular...
traffic/transportation capacity

Max flow origins

Rail networks of the Soviet Union in the 1950's

The US wanted to know how quickly the Soviet Union could get
supplies through its rail network to its satellite states in Eastern
Europe.

In addition, the US wanted to know which rails it could destroy most

These two problems are closely related: solving the
also solves the of figuring out the
cheapest way to cut off the Soviet Union from its satellites.

Source: , The Imp of Algorithms, at ww

easily to cut off the satellite states from the rest of the Soviet Union.

14 15
Algorithm idea Algorithm idea
| |
send some flow down a path
20 10
10
20
17 18

4/4/24

Algorithm idea Algorithm idea
|) |)
send some flow down a path reroute some of the flow
Now what? Total flow?
19 20

Algorithm idea

reroute some of the flow

30

Algorithm idea

21

22

4/4/24

Algorithm idea Algorithm idea
|) |)
send some flow down a path send some flow down a path
2/4
23 24
Algorithm idea Algorithm idea
| |
send some flow down a path reroute some of the flow
2/4 4/4
25 26

4/4/24

Algorithm idea Cuts
| |
A cut is a partitioning of the vertices into two sets S and
Sy = V-S;
Are we done?
Is this the best we can do?
27 28
Flow across cuts Flow across cuts
|] |]

In flow graphs, we're interested in cuts that separate s from t,
thatiss € Ssand t € St

10/10

a/10

The flow “across” a cut is the total flow from nodes in S¢
to nodes in S; minus the total from nodes in S; to S¢

What is the flow across this cut?

29

30

4/4/24

Flow across cuts
|

The flow “ccross” a cut is the total flow from nodes in S¢
to nodes in S; minus the total from nodes in S; to S

10+10-6 = 14

Flow across cuts

Consider any cut where s € Ssand t € Sy, i.e. the cut partitions
the source from the sink

What do we know about the flow across the any such cut?

31

32

Flow across cuts
|

Consider any cut where s € Ss and t € Sy, i.e. the cut partitions

the source from the sink

The flow across ANY such cut is the same and is the current
flow in the network

Flow across cuts

Consider any cut where s € Ss and t € Sy, i.e. the cut partitions

the source from the sink

4+10=14

33

34

4/4/24

Flow across cuts
|

Consider any cut where s € Ssand t € Sy, i.e. the cut partitions
the source from the sink

4+6+4 =14

Flow across cuts
|

Consider any cut where s € Ssand t € Sy, i.e. the cut partitions
the source from the sink

10+10-6 = 14

35 36
Flow across cuts Flow across cuts
| |
Consider any cut where s € Ss and t € Sy, i.e. the cut partitions The flow across ANY such cut is the same and is the current
. flow in the network
the source from the sink
Inductively?
The flow across ANY such cut is the same and is the current nductively
flow in the network
Wh)'2 Can you prove ite [every vertex is on a path from s to t
/s 0 in-flow = out-flow for every vertex (except s, t)
0 flow along an edge cannot exceed the edge capacity
0 flows are positive
37 38

4/4/24

Flow across cuts Flow across cuts
|) |)
The flow across ANY such cut is the same and is the current The flow across ANY such cut is the same and is the current
flow in the network flow in the network
Base case: S. = s Inductive case: Consider moving a node x from St to Ss
O
- Flow is total from from s to t: therefore the Is the flow across the different partitions the same?
total flow out of s should be the flow
- All flow from s gets to t
- every vertex is on a path from s to t
- in-flow = out-flow
39 40

Flow across cuts

Inductive case: Consider moving a node x from St to Ss
cut = left-inflow (x) - left-outflow (x) cut = right-outflow(x) = right-inflow (x
left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x) in-flow = out-flo:
left-inflow(x) - left-outflow(x) = right-outfl ~ right-inflow(x)

Flow across cuts
|

Consider any cut where s € Ss and t € Sy, i.e. the cut partitions

the source from the sink

The flow across ANY such cut is the same and is the current
flow in the network

41

42

10

4/4/24

Capacity of a cut
[

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

How do we calculate the capacity?

Capacity of a cut
[

The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut)

Capacity is the sum of the edges from Ss to St

10+9=19
43 44
Capacity of a cut Capacity of a cut
| |
The “capacity of a cut” is the maximum flow that we could The “capacity of a cut” is the maximum flow that we could
send from nodes in Ss to nodes in St (i.e. across the cut) send from nodes in Ss to nodes in St (i.e. across the cut)
Capacity is the sum of the edges from Ss to St Capacity is the sum of the edges from Ss to St
Why?
- Any more and we would violate the edge capacity
constraint
- Any less and it would not be maximal, since we
could simply increase the flow
45 46

11

4/4/24

Max Power

|]
https://www.youtube.com/watch2v=BSVmsécTPnk

Maximum flow
=

For any cut where s € Ssand t € St
the flow across the cut is the same

the maximum capacity (i.e. flow) across the cut is the sum
of the capacities for edges from Ss to St

a/4

4/10 a9

Are we done?
Is this the best we can do?

47 49
Maximum flow Maximum flow
| |
For any cut where s € Ssand t € S What is the minimum capacity cut for this graph?
the flow across the cut is the same
the maximum capacity (i.e. flow) across the cut is the sum N
of the capacities for edges from Ss to St Capacity = 10 + 4
4/4
a/10 a5
We can do no better than the minimum capacity cut! Is this the best we can do?
50 51

12

https://www.youtube.com/watch?v=BSVms6cT9nk

4/4/24

Maximum flow Algorithm idea
| |
What is the minimum capacity cut for this graph?
send some flow down a path
Capacity = 10 + 4
How do we determine the
path to send flow down?
flow = minimum capacity, so we can do no better
52 53
Algorithm idea Algorithm idea
| |
send some flow down a path reroute some of the flow
4/4
a/10 a/9
Search for a path with How do we handle
remaining capacity from s to t “rerouting” flow?2
54 55

13

4/4/24

Algorithm idea Algorithm idea
| |
reroute some of the flow
4/4
2/9 4/10 a/9

During the search, if an edge During the search, if an edge

has some flow, we consider has some flow, we consider

“reversing” some of that flow “reversing” some of that flow
56 57

The residual graph

The residual graph Gy is constructed from G

For each edge e in the original graph (G):
if flow(e) < capacity(e)
= introduce an edge in G with capacity = capacity(e)-flow(e)
= this represents the remaining flow we can still push
if flow(e) > 0
= introduce an edge in Gt in the opposite direction with
capacity = flow(e)

= this represents the flow that we can reroute /reverse

Algorithm idea
=

20 10

20

20 10

Find a path from
stotin Gt

Gs 10

58

59

14

Algorithm idea

20

Find a path from

Algorithm idea

20

Find a path from

Gt 10 stotin Gt Gy 10 stotin Gt
20 20
60 61
Algorithm idea Algorithm idea
| |
4
G 1o 10
G
10
10 5
4
20 10 Gs 1o 10
None exist... done!
Gt 10
20 10
10 3
62 63

4/4/24

15

4/4/24

Algorithm idea Algorithm idea
e
G

8/10

Find a path from Find a path from
stotin Gt stotin Gt

Gs

64 65

Algorithm idea Algorithm idea

Find a path from Find a path from
stotin Gt stotin Gt

66 67

16

4/4/24

Algorithm idea

4/4

=
G

Ford-Fulkerson
|

Ford-Fulkerson(G, s, t)
flow = O for all edges
Gy = residualGraph(G)

while a@g@exisfs from s to tin G¢

send as much flow along the path as possible
Gs = residualGraph(G)

return flow

a simple path contains no
repeated vertices

68

69

Ford-Fulkerson: runtime?
|

Ford-Fulkerson(G, s,)
flow = 0 for all edges
Gt = residualGraph(G)
while a simple path exists from s to t in G¢

Ford-Fulkerson: runtime?
|

Ford-Fulkerson(G, s,)
flow = 0 for all edges \ " h
— - traverse the grapl
Gt = residualGraph(G) - at most add 2 edges
while a simple path exists from s to t in G¢ for original edge

send as much flow along path as possible send as much flow along path as possible - [p|
Gt = residualGraph(G) Gt = residualGraph(G)
return flow refurn flow Can we simplify this expression?
74 75

17

4/4/24

Ford-Fulkerson: runtime? Ford-Fulkerson: runtime?
|) |)
Ford-Fulkerson(G, s, t) Ford-Fulkerson(G, s, t)
flow = O for all edges _ wraverss the aranh flow = O for all edges
Gt = residualGraph(G) - ot most cddgz edes Gt = residualGraph(G) _ BFS or DFS
while a simple path exists from s to t in G for original edge while|a simple path exists from s to t in G - OV +E) =O(F)
send as much flow along path as possible - 8(v + E) = 8(E) send as much flow along path as possible
Gt = residualGraph(G) - (all nodes exists on Gt = residualGraph(G)
return flow paths from s to) return flow
76 77
Ford-Fulkerson: runtime? Ford-Fulkerson: runtime?
| |
Ford-Fulkerson(G, s,) Ford-Fulkerson(G, s,)

flow = 0 for all edges
residualGraph(G)

flow = 0 for all edges
residualGraph(G)

- max-flow! - max-flow!
simple path exists from s to t in Gf - increases ever iteration simple path exists from s to t in G¢ - increases ever iteration
send as much flow along path as possible - integer capacities, so send as much flow along path as possible - integer capacities, so
G+ = residualGraph(G) integer increases G+ = residualGraph(G) integer increases
return flow return flow
Can we bound the number of Overall runtime? O(max-flow * E)

times the loop will execute?

78 79

18

4/4/24

O(max-flow * E) O(max-flow * E)
| |
Can you construct a graph that could get this running time2 Can you construct a graph that could get this running time2
Hint:
100 100
100 100
100 100
100 100
80 81
O(max-flow * E) O(max-flow * E)
|] |]
Can you construct a graph that could get this running time? Can you construct a graph that could get this running time?
82 83

19

4/4/24

O(max-flow * E)
I --—————————..ee
Can you construct a graph that could get this running time2

O(max-flow * E)

Can you construct a graph that could get this running time2

84

85

O(max-flow * E)
o —

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

What is the problem here?
Could we do better?

86

87

20

4/4/24

Faster variants

|
Edmonds-Karp
Select the shortest path (in number of edges) from s to t in Gf
= How can we do this?
use BFS for search
Running time: O(V E?)
" avoids issues like the one we just saw
= see the book for the proof
= or
http:/ /www.cs.cornell.edu/courses/CS4820,/201 1sp /handouts/e
dmondskarp.pdf
preflow-push (aka push-relabel) algorithms

ov?)

Other variations...

ebad Compiesty

sigartm [N e 1)
ok gy
PemailL
I s

o i i OXVE et

et ——

Panin o

TABLE 1. PoLYNOMIAL-TiNE ALGORITNS FOR T MAXWUN FLOW PRoRL0

o Date Disoverss __ Runningsime __ Reforences
T 196 (o) 5
2 1970 owm) 7l
3 1974 oy 1)
3 1977 owm) [t}
s 1978) @i
6 1978) o
7 1978 O(rmlog ny) 112,25
5 1580 oGl m) @726
5 1982 our) sl

0 1983 O(miog) o]
n 1984 Tuan o) o1
2 1985 Goldber o) 114
& 1986 Goldberg and Tarian OGumlogtnt/m) (16.15]
I} 1986 Abuja sl Orin) [t}

*Algorthm 13 s presenied in this paper.

hitp://akira.ruc.dk/~keld /teaching /algoritmedesign_
03 /Artikler /08 /Goldberg88.pdf

ey
hitp://en.wikipedia.org /wiki/Maximum_flow

88

89

Network flow properties
=

If one of these is true then all are true (i.e. each
implies the the others):

f is a maximum flow
Gt (residual graph) has no paths from s to t

|| = minimum capacity cut

Handout

90

91

21

4/4/24

10

How much water flow
can we continually
send from s to 12

Calculate residual graph

S ® ®

92

93

22

