4/16/24

Admin

Assignment 8

Assignment 9

SHORTEST PATHS

David Kauchak
CS 140 — Spring 2024

1 2
All pairs shortest paths All pairs shortest paths

|] B e
All pairs shortest paths: caleulate the shortest paths All pairs shortest paths: caleulate the shortest paths
between all vertices between all vertices

Easy solution?

4/16/24

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths
between all vertices

Run Bellman-Ford from each vertex!

O(VE)
* Bellman-Ford: O(VE)
* V calls, one for each vertex

Floyd-Warshall: key idea

Label all vertices with a number from 1 to V

d;j* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

5 6
Floyd-Warshall: key idea Floyd-Warshall: key idea
| |
d;* = shortest path from vertex i to vertex j d;* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k} using only vertices {1,2, ..., k}
What is d5%2 di53 = 1. Can't use vertex 4.
7 8

4/16/24

Floyd-Warshall: key idea
=

Label all vertices with a number from 1 to V

d;j* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

If we want all possibilities, how many values are there
(i.e. what is the size of dij*)2

Floyd-Warshall: key idea

|]
Label all vertices with a number from 1 to V

d;j* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

V3
* i:all vertices
Jj: all vertices

k: all vertices

10

Floyd-Warshall: key idea
[

Label all vertices with a number from 1 to V

d;* = shortest path from vertex [to vertex j
using only vertices {1, 2, ..., k}

What is d;;"2
* Distance of the shortest path from i to j
If we can calculate this, for all (i, j), we're done!

11

Recursive relationship

d;* = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

Assume we know d;/*

How can we calculate (,Il/k“, i.e. shortest path now

including vertex k+12 (Hint: in terms of ;")

Two options:
1) Vertex k+1 doesn't give us a shorter path
2) Vertex k+1 does give us a shorter path

12

4/16/24

Recursive relationship
e

d,,"" = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

dif =2

Recursive relationship

d,,/‘ = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

k+1 —
dif T = di

13

14

Recursive relationship
=

d;* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

A+t =2

Recursive relationship

d;* = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

4+t =1

some vertices {1...k} some vertices {1...k}

What is the cost of this path?

15

16

4/16/24

Recursive relationship
=

d,,"‘ = shortest path from vertex i to vertex j
using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

dif**t = digeen) + dgernys

some vertices {1...k}

dige+1)¢

17

some vertices {1...k}

die

Recursive relationship
=

d,,/‘ = shortest path from vertex i to vertex j
using only vertices {1, 2, ..., k}

Two options:

1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

k+1 —

How do we combine these two options?

18

Recursive relationship
[

d;* = shortest path from vertex i to vertex j

using only vertices {1,2, ..., k}

Two options:
1) Vertex k+1 doesn’t give us a shorter path
2) Vertex k+1 does give us a shorter path

. K
di*t = min(d;jk, digesny + dgesny;)

Pick whichever is shorter

19

Floyd-Warshall

Calculate dijk for increasing k, i.e. k = 1 to V

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork=1toV

fori=1toV
forj=1toV

dyjk = min(dy*t, dyy Tt + di <

return dV

20

4/16/24

Floyd-Warshall(G = (V,E\W)):
do=w // initialize with edge weights
fork =110V

fori=1t0V

forj=1toV

dijk = min(di*~L dy T+ di* T

Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

dijk = min(di*L dy T + dit

return dV return d¥
k=0 k=1
1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 2 3
0 4 -1 » = 1[0 4 -1 « 0 4 -1 o = 1 0 4 -1
© 0 o o 5 20 0 o o 5 © 0 o o 5 2
© 3 0 2 2 3w 3 0 2 2 o 3 0 2 2 3
o o o 0 -3 4f 0 o0 o 0 -3 w o o 0 -3 4
© o | o« 0 50w o 1 o 0 © o | o« 0 5
adjacency matrix no change
21 22
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =1tV fork =1tV
for i toV fori=1toV
forj =110V forj=11oV
dijk = min(dy* 1, dg T+ di dijk = min(dy* ™, i+ di)
return dV return dV
k=1 k=2 k=2 3
1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 2 3
0 4 -1 o (x 1 0 4 -1 (9 0 4 -1 o 9 1 0 2
w (O o oo (5 2 o 0 o ®w 5 2
o 3 0 2 2 3 o 3 0 2 2 3
w oo oo (O -3 4 o o oo (0 =3 4
w o | o 0 5 w o | o 0 5
minimum
23 24

4/16/24

Floyd-Warshall(G = (V,E\W)):
do=w // initialize with edge weights
fork =110V

fori=1t0V

forj=1toV

dijk = min(di*~L dy T+ di* T

Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

dijk = min(di*L dy T + dit

return dV return dV
k=2 k=2
12 3 4 s T2 3 2 3 4 5 T2 3 4
110 (4) 41 o 9 1 0 2 0 4 -1 » 9 1 0 2
2|l 0 0 o o 5 2 w () o o 5 2
3o 3, 0 2 2 3 © 3 0 2 2 3
4| 0 o0 o0 (0 =3 4 w o oo (O =3 4
5l o o 1 o 0 5 o o | o 0 5
minimum Found a shorter path!
25 26
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights

fork=1toV

fori=1toV
forj=1toV

dijk = min(di !, die T + it

fork =1tV
fori=1toV

forj=1toV

dijk = min(di*L di T + dit

return d return dV
k=2 3 k=2 3

12 3 4 s 123 2 3 4 5 T2 3 4
110 4 -1 o 9 1 0 2 -1 0 4 <1 9 1 0 2 -101
2l 0 (0 o o 5 2 o 0 o ®w 5 2
3o 3 0 2 2 3 o 3 02 2 3
4 o 0 o 0 =3 4 © o o 0 =3 4
5w o 1 o 0 5 ©w o |1 o 0 5

minimum
27 28

4/16/24

Floyd-Warshall(G = (V.EW)):

dijk = min(di*~L dy T+ di* T

do=w // initialize with edge weights
fork =110V
fori=1t0V
forj=1toV

Floyd-Warshall(G = (V,E;W)):
do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

dijk = min(di*L dy T + dit

return d¥ return d¥
k=2
12 3 4 5 T2 3 4 5 2 3 4 5 12 3 4 5

110 4 -1 o 9 o2 11 0 4 -1 » 9 o2 -1 142
2|l o () w o 5 2 w () o o 5 2
3o 3 0 2 2 3 © 3 0 2 2 3
4| 0 o o 0 -3 4 © o o 0 -3 4
5l o o 1 o 0 5 o o | o 0 5

Floyd-Warshall(G = (V.EW)): Floyd-Warshall(G = (V,EW)):

do=w // initialize with edge weights do=w // initialize with edge weights

fork =110V fork =110V

fori=1toV fori=1toV
forj=1toV forj=1toV

dijk = min(di !, die T + it

dijk = min(di*L di T + dit

return d¥ return d¥
k=2 k=3 k=2 —3
12 3 4 5 12 3 4 s 2 3 4 5 12 3 4 s

110 4 <1 » (9 1 02 -1 14 0 4 -1 » 9 10 2 -1 1 1
2|l 0 0 o o 5 2 © 0 o o« 5 2 © 0 o o 5
3l 3 0 2 (2 3 o 3 0 2 2 3leo 3 0 2 2
4 o 0 o 0 =3 4 © o o 0 =3 4 ® o 0 -3
5o 0 1 o 0O 5 o o | ® 0 5| o (2

minimum Found a shorter path!

31 32

4/16/24

Floyd-Warshall(G = (V.EW)): Floyd-Warshall(G = (V,EW)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1toV fori=1toV
forj=1toV forj =110V
dijk = min(di*~L dy T+ di* T dijk = min(di*L dy T + dit
return d¥ return d¥
k=2 k=3 k=2 k=3
12 3 4 5 T2 3 4 5 2 3 4 5 12 3 4 5
110 4 -1 o 9 10 2 -1 1 1 10 4 -1 » 9 10 2 -1 1 1
2|l o () w o 5 2 w 0 o 5 2|l o () ® o 5 2 w () o oo 5
3l w3 0 2 2 3o 3 0 2 2 3w 3 0 2 2 31w 3 0 2 2
4| 0 o0 o0 (0 =3 4| 00 0o 0 (O =3 4] 0 o0 o (0 =3 4 o0 0o o0 (O =3
S| (o (1 o 0 5| w (4 5o o0 1 o« 0 5w 4 1 (2
minimum Found a shorter path!
33 34
Floyd-Warshall(G = (V.EW)): Floyd-Warshall(G = (V,EW)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =110V fork =110V
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(dy*t, g+ di K dijk = min(di*L di T + dit
return dV return d¥
k=2 k=3 k=2 k=3
12 3 4 5 T2 3 4 5 2 3 4 s 12 3 4 5
110 4 -1 o 9 10 2 -1 1 1 110 4 -1 o 9 10 2 -1 1 1
2|l 0 0 o o 5 2 © 0 ®o o 5 2|l o 0 o o 5 2 © 0 o o 5
3l 3 0 (2 2 3l 3 0 2 2 3o 3 0 2 2 3leo 3 0 2 2
4| 0 o ow (=3 4| o0 0o o (O =3 4| 0 o w (=3 4 o0 o0 o (O =3
51 o o (1) (e 0 5o 4 1 (3 o o 1 o 0 Sl 4 1 3 0
minimum Found a shorter path!
35 36

4/16/24

Floyd-Warshall(G = (V.EW)): Floyd-Warshall(G = (V,EW)):

do=w // initialize with edge weights

do=w // initialize with edge weights
fork =110V

fork =1tV
fori=1toV fori=1toV
forj =110V forj=1toV
. - = -
dijk = min(dy1 d T+ dy K dijk = min(dy* 1, dg T+ di K

return dV return dV
k=3 k=4 k=3 k=4
2 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
02 -1 1 1 1 02 -1 12 1 0 2 -1(1 (1 1 02 -1 1 £
2 ©o 0 o o 5§ 2 2 w () o o 5 2
3 © 3 0 2 2 3 3 © 3 0 2 2 3
4 © o o (0 -3 4 4 ®© o o (0 =3 4
©w o 1 o 0 5 5 © o 1 o« 0 5
minimum Found a shorter path!
37 38

Floyd-Warshall(G = (V.EW)):
do=w /!
fork =110V

Floyd-Warshall(G = (V,EW)):

do=w //in
fork =1tV

lize with edge weights

ize with edge weights

fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(dy*t, g+ di K dijk = min(di*L di T + dit

return d¥

return dV
k=3 k=4 k=3 k=4
12 3 4 s 12 3 4 5 2 3 4 5 12 3 4 5
0 2 -1 1 1 1 02 -11 -2 1 0 2 -1 1 1 ! 02 -1 1 -2
o (o o 5 2 2 w (0 o o 5 2 o () o 5
© 3 0 2 2 3 3o 3 0 2 2 3 |w 3 0 2 @
w o o 0 -3 4 4 © o oo (0 -3 4
© o 1 o 0 5 w o | o 0 5
40

10

4/16/24

Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =1tV fork =1tV
fori=1toV fori=1toV
forj=1toV forj=1toV
dijk = min(di*~L dy T+ di* T dijk = min(di*L dy T + dit
return V' return dV
k=3 k=4 k=3 =4
2 3 4 5 1 2 3 4 5 2 3 4 5 1 2 3 4 5
L0 2 -1 1 1 10 2 -1 1 =2 102 -1 1 1 P02 -1 1 -2
2 © 0 ® o 5 2 © 0 o ®w 5 2 o 0 w o 5 2 o 0 © ®w 5
3l 3 0 (2 2 3w 3 0 2 =1 3l 3 0 2 2 3w 3 0 2 -1
4 | 0 w0 o (0 =3 4 4 | 0 w0 o (0 =3 4 | 0 o o (O =3
5 © o | o 0 5 5 ©w o | o 0 S| 4 1 3 0
minimum Found a shorter path!
41 42
Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights .
PR Floyd-Warshall analysis
fori=1toV
forj=1toV =
dijk = min(dy*t, g+ di K
Is it correct?
return d
k=4 k=5
2 3 4 5 1 2 3 4 5
1 0o 2 -1 1 =2 1 0 2 -1 1 =2 Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights
© 0 © o 5 2| 0 6 @8 5 fork =110V
© 3 0 2 -1 3w 3 0 2 -1 fori=11t0V
w o w (0 =3 4| ol &2 0 -3 forj=1toV
© o 1 ® 0 slew a4 1 3 0 dijk = min(di !, dy T + <Y
Donel return d
43 44

11

4/16/24

Floyd-Warshall analysis
=

Is it correct?
Any assumptions?

Floyd-Warshall(G = (V,E,W)):

do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

dijk = min(dy*~1, dy T + i f Y

return dV

Floyd-Warshall analysis

Is it correct?
Assuming the graph has no negative cycles!

What happens if there is a negative cycle?

Floyd-Warshall(G = (VEW)):

do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

dijk = min(dy*~1, dg T + i)Y

return dV

45 46
Floyd-Warshall analysis Floyd-Warshall analysis
| |
If the graph has a negative weight cycle, at the end, at .
least one of the diagonal entries will be a negative Run-time?
number, i.e., we there’s a way to get back to a vertex
using all of the vertices that results in a negative weight
2 3 4 5
Floyd-Warshall(G = (V.EW)):
! O 2 -11 -2 do=w // initiclize with edge weights
2 ol 7 9 5 fork =110V
3w 300 2 -1 fori=1to0V
4 © 1 =20 -3 forj =1tV
51w o 1 o (0 dijk = min(dy T+ dy Y
return dV
47 48

12

4/16/24

Floyd-Warshall analysis

Run-time: B(V3)

Floyd-Warshall(G = (VEW)):
do=w // initialize with edge weights
fork =TtoV
fori=1toV
forj=1toV

gk = min(di* 1 dg T+ di Y

return dV

Floyd-Warshall analysis

What type of algorithm is Floyd-Warshall2

Floyd-Warshall(G = (VEW)):
do=w // initialize with edge weights
fork =110V
fori=1toV
forj=1toV

= -
dyk = min(di* Ly T+ d

return dV

49 50
. .
Floyd-Warshall analysis Floyd-Warshall analysis
| |
Dynamic programming!! Space usage?
Build up solutions to larger problems using solutions to
smaller problems. Use a table to store the values.
Floyd-Warshall(G = (V,E,W)): Floyd-Warshall(G = (V,E,W)):
do=w // initialize with edge weights do=w // initialize with edge weights
fork =1tV fork =1tV
fori=1toV fori=1toV
forj=1toV forj =110V
dyk = min(di* L dy T+ dit dyk = min(di* L dy T+ d
return dV return dV
51 52

13

4/16/24

Floyd-Warshall: key idea Floyd-Warshall: key idea
| |
Label all vertices with a number from 1 to V Label all vertices with a number from 1 to V
d;j* = shortest path from vertex i to vertex j d;jk = shortest path from vertex [to vertex j
using only vertices {1,2, ..., k} using only vertices {1, 2, ..., k}
i V3
If we want all possibilities, how many values are there i .
(i.e. what is the size of dif*)? * i allvertices Can we do better?
e j:all vertices
e k: all vertices

53 54

Floyd-Warshall analysis All pairs shortest paths
| |

V * Bellman-Ford: O(VZ2E)

Space usage: 6(V?)
Only need the current value and the previous Floyd-Warshall: 8(V3)

Floyd-Warshall(G = (VEW)):

do=w // initialize with edge weights
fork =11tV
fori=1tV
forj =1tV

dijk = min(di !, dy T + <Y

return dV

55 56

14

4/16/24

All pairs shortest paths
=

calculate the shortest paths between all points

Easy solution?

All pairs shortest paths for positive weight graphs:

All pairs shortest paths
=

calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)2

All pairs shortest paths for positive weight graphs:

57

58

All pairs shortest paths
[

All pairs shortest paths for positive weight graphs:
calculate the shortest paths between all points

Run Dijsktras from each vertex!

O(V2log V + VE)
* V calls to Dijkstras
* Dijkstras: O(V log V + E)

All pairs shortest paths
[

V * Bellman-Ford: O(V2E)
Floyd-Warshall: B(V3)

V * Dijkstras: O(V2 log V + V E)

Is this any better2

59

60

15

4/16/24

All pairs shortest paths All pairs shortest paths
[[

V * Bellman-Ford: O(V2E
() All pairs shortest paths for positive weight graphs:

calculate the shortest paths between all points
Floyd-Warshall: B(V3)
Run Dijsktras from each vertex!
V * Dijkstras: O(V2 log V + V E)

Challenge: Dijkstras assumes positive weights

If the graph is sparse!

61 62

Johnson’s: key idea Lemma
[[

Reweight the graph to make all edges positive such let h be any function mapping a vertex to a real value
that shortest paths are preserved

If we change the graph weights as:
w(u,v) = w(u,v)+h(u) —h(v)

The shortest paths are preserved

What's the shortest path from A to D2

63 64

16

4/16/24

Lemma: proof w(u,v) =w(u,v)+h(u)-h)
|]

Lets, v, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

WS VeV t) = W(S,0,) 4 () = B3+ W,y V)

weight for first edge weight for remaining edges

Lemmc: proof v?z(u,v)= w(u,v)+h(u)—h(v)
|

Lets, vi, v2, ..., v, t be a path from s to t

The weight in the reweighted graph is:

WS, Ve Vis 1) = WSV +1(8) = h(v) + W(V..es vy)

=w(s,v)+h(s)=h(v) + wv, v, +h(v,) = h(v,) + WV, v, 1)

weight for
weight for first edge weight for second edge

remaining edges

65

66

Lemma: proof W) =w(,v)+h(u)-h(v)
Let s, vi, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

WS Vs VD) = WS, + ()= KW+ WV, eV, 1)
=w(s,v)+h(8)=h(v) # WV vy)+h(v) = h(vy) + (v, v, 1)

=w(s,v)+h(s)+wv,,v,) = h(v,) + W(v,,...,v,.1)

Lemma: proof W) =w(uv)+h(u)-h(v)
Lets, vi, v2, ..., vk, t be a path from s to

The weight in the reweighted graph is:

WS VeV) = W) +(8) = (0) + (Vs V1)
=w(s,v)+h($) = h(v) # W vy +h(v)= h(vy) + (0, .. v, 1)

=w(s,v)+h(s)+wv,,v,) = h(v,) + W(v,,...,v,.1)

\

=W, + () + W,y)= B0) W0y 1) o h() = (0, 4 WV V1)

weight for
weight for third edge remaining edges

67

68

17

4/16/24

Lemma: proof w(u,v) =w(u,v)+h(u)-h)
|]

Lets, v, v2, ..., vk, t be a path from s to t

The weight in the reweighted graph is:

WS, Vysers Vs 1) = WSV +1(8) = h(v) + W(V,,.cs vy 1)
=w(s,v)+h(s)=h(v) + wv, vy +h,) = h(v,) + WV, ..., v,,1)
=w(s,)+ () + WV, vy) = h(vy) £ W(V,,.. v, 1)

=w(s,v,)+h(s)+w(v,,v,) = h(v,) ¥ WV, v;) & h(v,) = h(v,) + W(vs,.... v, 1)

=08, 1) + () + W00)+ W, 13) = h(0,) 4 Wy V1)

=W,V V) +h(S) = (D)

Lemma: proof
[

WS, Vpsees Vi 1) = WS, VsV 1) + h(8) = (1)

Claim: the weight change preserves shortest paths, i.e. if a path was the
shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

Justification?

69

70

Lemma: proof
[

WS, Vp e Vs) = WS,V s Vi, 1) + (8) = (1)

Claim: the weight change preserves shortest paths, i.e. if a path was the

shortest from s to t in the original graph it will still be the shortest path
from s to t in the new graph.

h(s) = h(t) is a constant and will be the same for all

paths from s to 1, so the absolute ordering of all paths
from s to t will not change.

Lemma
|

let h be any function mapping a vertex to a real value

If we change the graph weights as:
w(u,v) = w(u,v)+h(u) - h(v)

The shortest paths are preserved

Big question: how do we pick h?

71

72

18

4/16/24

Selecting h Johnson’s algorithm
|) |)
Need to pick h such that the resulting graph has all Create G’ with one extra node s with O weight edges to all nodes
weights as positive run Bellman-Ford(G',s)

if no negative-weight cycle

w(u,v) = w(u,v)+h(u) - h(v)

reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

73 74
Create G’ Create G’
run Bellman-Ford(G',s) run Bellman-Ford(G',s)
if no negative-weight cycle if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex run Dijkstra’s from every vertex
reweight shortest paths based on G reweight shortest paths based on G

75 76

19

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDC:

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:0
SB: ?
SDC:
SDD:
SDE:

77

78

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:0
SDB: -2

S>D:
SDE:

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

SDA:0
S>B: -2
S2C: 0
S2D: 0
SDE: -3

79

80

4/16/24

20

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h®)

h(v) in blue

81

82

Create G’
run Bellman-Ford(G’;s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)
-1 + 0 - -2

h(v) in blue

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)

-2 o

h(v) in blue

83

84

4/16/24

21

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h)
2 +-2 -0

o

h(v) in blue

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h®)

h(v) in blue

85

86

Create G’
run Bellman-Ford(G’;s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)
4 +0 -0

-2 o

h(v) in blue

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)-h)

h(v) in blue

87

88

4/16/24

22

Create G’
run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h)
5 +0 - -3

2 0

h(v) in blue

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

w(u,v) =w(u,v)+h(u)—h®)

h(v) in blue

89

90

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

Create G’

run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

91

92

4/16/24

23

Create G’

4/16/24

run Bellman-Ford(G',s)
if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex

reweight shortest paths based on G

ADB: -1
ADC: 2
ADD: 1
ADE: -2

93

94

Selecting h

Need to pick h such that the resulting graph has all
weights as positive

Create G’ with one extra node s with O weight edges to all nodes
run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v
run Dijkstra’s from every vertex
reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that
reweighted graph has only positive edges)?

Reweighted graph is positive

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

Claim: h(v) = h(u)+w(u,v)

Why?

95

96

24

4/16/24

Reweighted graph is positive
[

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

Claim: h(v) = h(u)+w(u,v)

If this weren't true, we could have made a shorter path s to v
using u

... but this is in contradiction with how we defined h(v)

Reweighted graph is positive
[

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) = h(u)+w(u,v)

w(u,v)+h(u)-h(v)=0

What is this?

97

98

Reweighted graph is positive
[

Take two nodes u and v

h(u) shortest distance from s to u
h(v) shortest distance from s to v

h(v) = h(u)+w(u,v)
w(u,v)+h(u)-h(v)=0
w(u,v) = w(u,v)+ h(u) - h(v)

W, v) = wtt,v) + h(e) = h(v) = 0 All edge vt/e\'gms in reweighted graph are
non-negative

Johnson’s algorithm
[

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

99

100

25

4/16/24

Johnson’s algorithm
=

Create G’
run Bellman-Ford(G’,s)
if no negative-weight cycle
reweight edges in G
run Dijkstra’s from every vertex

reweight shortest paths based on G

Run-time?

6(v)
8(VE)

6(E)
O(V2logV+VE)
6(E)

All pairs shortest paths
=

V * Bellman-Ford: O(V2E)
Floyd-Warshall: B(V3)

Johnson’s: O(V2 log V + V E)

101

102

DAGs

Can represent dependency graphs

underwear

Topological sort

€ E, v appears before v in the ordering

An ordering of the nodes that “obeys” the dependencies, i.e.
an activity can't happen until it's dependent activities have
happened

underwear | ——

A linear ordering of all the vertices such that for all edges (u,v)

watch
underwear

103

104

26

4/16/24

Topological sort Topological sort

|) |
TOPOLOGICAL-SORT1(G) ToOPOLOGICAL-SORT1(G)
1 Find a node v with no incoming edges 1 Find a node v with no incoming edges
2 Delete v from G 2 Delete v from G
3 Add v to linked list 3 Add v to linked list)
4 TOPOLOGICAL-SORT1(G) 4 TOPOLOGICAL-SORT1(G)

unde
105 106

Topological sort Topological sort
| |
TOPOLOGICAL-SORT1(G) ToPOLOGICAL-SORT1(G)
1 Find a node v with no incoming edges 1 Find a node v with no incoming edges
2 Delete v from G 2 Delete v from G
3 Add v to linked list 3 Add v to linked list
4 TOPOLOGICAL-SORT1(G) 4 TOPOLOGICAL-SORT1(G)
107 108

27

4/16/24

Topological sort

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

B0 =

Topological sort

ToroLOGICA

SORT1(G)
Find a node v with no incoming edges
Delete v from G

1

2

3 Add v to linked list

4 ToOPOLOGICAL-SORT1(G)

109

110

Topological sort

TOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

=

underwear

Topological sort

TopPoLOGICA

SORT1(G)

1 Find a node v with no incoming edges
Delete v from G

Add v to linked list
TOPOLOGICAL-SORT1(G)

9
3
4

underwear

111

112

28

4/16/24

Topological sort Running time?
= =

TOPOLOGICAL-SORT1(G)

1
2
3
4

Find a node v with no incoming edges ToOPOLOGICAL-SORT1(G)
Delete v from G
Add v to linked list

TOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges
2 Delete v from G

3 Add v to linked list

4 TOPOLOGICAL-SORT1(G)

113 114
Running time? Running time?
| |
TOPOLOGICAL-SORT1(G) TOPOLOGICAL-SORT1(G)
[1 Find a node v with no incoming edges |~ O(IVI+[E]) 1 Find a node v with no incoming edges
2 Delete v from G [2 Delete v from G | O(E)overall
3 Add v to linked list 3 Add v to linked list
4 ToOPOLOGICAL-SORT1(G) 4 TOPOLOGICAL-SORT1(G)
115 116

29

4/16/24

Running time?

TOPOLOGICAL-SORT1(G)

Running time?

TOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges 1 Find a node v with no incoming edges
2 Delete v from G 2 Delete v from G
3 Add v to linked list 3 Add v to linked list
4 TOPOLOGICAL-SORT1(G) 4 TOPOLOGICAL-SORT1(G)

How many calls? |V| Overall running time?

2
O(VI*+IVI [E)
117 118

Can we do better?

TOPOLOGICAL-SORT1(G)

Find a node v with no incoming edges

1

2 Delete v from G

3 Add v to linked list

4 TOPOLOGICAL-SORT1(G)

Topological sort 2

TOPOLOGICAL-SORT2(G)

1 for all edges (u,v) € F

2 active[v] — activelv] + 1

3 forallveV

4 if active[v] =0

5 ENQUEUE(S,v)

6 while 'EmpPTY(S)

7 u +— DEQUEUE(S)

8 add u to linked list

9 for each edge (u,v) € E

10 active[v] «— activelv] — 1
11 if active[v] =0

12 ENQUEUE(S, v)

119

120

30

4/16/24

Topological sort 2 Topological sort 2
|) |)
TOPOLOGICAL-SORT2(G) TOPOLOGICAL-SORT2(G)
1 for all edges (u,v) € E 1 for all edges (u,v) € E
2 active[v] — active[v] + 1 2 active[v] — active[v] + 1
3 forallveV 3 forallveV
4 if active[v] =0 4 if active[v] =0
5 ENQUEUE(S, v) 5 ENQUEUE(S, v)
6 while 'EMPTY(S) 6 while 'EmMPTY(S)
7 w +— DEQUEUE(S) 7 u +— DEQUEUE(S)
8 add u to linked list 8 add u to linked list
9 for each edge (u.v) € £ 9 for each edge (u.v) € £
10 active[v] — active[v] — 1 10 active[v] — active[v] — 1
11 if active[v] =0 11 if active[v] =0
12 ENQUEUE(S, v) 12 ENQUEUE(S, v)
121 122

. Running time?
Topological sort 2 9
| How many times do we process each node?
i 2
TOPOLOGICAL-SORT(G) How many times do we process each edge?
1 for all edges (u,v) € E
2 active[v] — active[v] + 1 O(IVI + [EI)
3 forallv € v ToPOLOGICAL-SORT2(G)
4 if active[v] =0 1 for all edges (u,v) € B
5 ENQUEUE(S,v) 2 active[v] — active[v] + 1
6 while !EmpPTY(S) 3 forallveV Y
- Ry 4 if activelv] = 0
7 U — Dm(lml E(b.) 5 ENQUEUE(S, v)
8 add u to linked list 6 while IEMPTY(S)
9 for each edge (u.,v) € E 7 u — DEQUEUE(S)
10 (l(‘“l'F[l'] — n(‘fil'F[l‘] —1 8 :Edd u to linked list
. 9 for each edge (u,v) € E
11 if active[v] =0 10 activelt] — activelo] — 1
12 ENQUEUE(S, v) 11 if active[t] = 0
12 ENQUEUE(S, v)
123 124

31

4/16/24

Detecting cycles

Undirected graph

BFS or DFS. If we reach a node we've seen already, then we've found a
cycle (have to be a bit careful about the node we just came from)

Directed graph
Call TopologicalSort
If the length of the list returned # | V| then a cycle exists

Handout

125 126
What are the shortest paths from $ to each of the Reweight the graph on the right based on the h values
vertices?
w(u,v) =w(u,v)+h(u)-h)
SDA:2
S=>B: -2 0
SDC: 2
S=D:
SDE: *
5 -3
]
h(v) in blue
127

128

32

