

5

An example

Prove the sum of two odd integers is even
Odd number: $n=2 k+1$ for some integer k
Even number: $n=2 k$ for some integer k
Let a and b be odd numbers
By definition: $a=2 i+1$ and $b=2 j+1$ where i and j are integers
$a+b=2 i+1+2 j+$
$=2 i+2 j+2$
$=2(i+j+1)$
since i and j are integers then $i+j+1$ is an
integer, so the number is even
6

Proof by induction (weak)

Proving something about a sequence of events by
first: proving that some starting case is true and
2. then: proving that if a given event in the
sequence were true then the next event would be true

9

Proof by induction example

Prove: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Base case: prove some starting case is true
Inductive case: Assume some event is true and prove the next event is true
Inductive hypothesis: Assume the event is true (usually k or
${ }^{k-1)}$
Inductive step to prove: What you're trying to prove assuming he inductive hypothesis is true
Proof of inductive step

10

$$
\sum_{i=1}^{n} i=1=\frac{1 * 2}{2}
$$

11

Inductive case
Prove: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Inductive hypothesis: assume $\mathrm{n}=\mathrm{k}-1$ is true

$$
\sum_{i=1}^{k-1} i=\frac{(k-1) * k}{2}
$$

$\sum_{i=1}^{k-1} i=\frac{(k-1) * k}{2}$

13

14

15

Layout of a proof by induction
State what you're trying to prove We show that XXX using proof by induction
We show that XXX
3. State the inductive hypothesis
4. Inductive proof
a. State what you want to show (may include a variable change, e.g., k in instead of n)
Show a step-bb-s-step derivation from the left-hand side resulting in the
right-hand side. Give justifications for steps that are non-trivial

17

Sorting

Input: An array of numbers A
Output: The number in sorted order, i.e.,

$$
A[i] \leq A[j] \forall i<j
$$

19

27

25

28

33

36

37

Big O: Upper bound
$O(g(n))$ is the set of functions:
$O(n))=\left\{\begin{array}{l}\left.f(n): \begin{array}{l}\text { there exists positive constants } c \text { and } n_{0} \text { such that } \\ 0 \leq f(n) \leq C(n) \text { for all } n \geq n_{0}\end{array}\right\}\end{array}\right.$

Generally, we're most interested in big O notation since it is an upper bound on the running time

39

40

41

43

44

53

56

57

