

Minimum cut property
Given a partition S , let edge e be the minimum cost
edge that crosses the partition. Every minimum spanning tree contains edge e .

45

46

47

Is Dijkstra' s algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is
the actual shortest distance from s to v

The only time a vertex gets visited is when the distance from to that vertex is smaller than the distance to any remaining vertex
a Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

49

51

Is Dijkstra's algorithm correct?
Invariant: For every vertex removed from the heap, dist[v] is
the actual shortest distance from s to v
a The only time a vertex gets visited is when the distance from
s to that vertex is smaller than the distance to any remaining
vertex
a Therefore, there cannot be any other path that hasn't been
visited already that would result in a shorter path
We relied on having positive edge weights for correctness!

57

59

58

60

61

62

63
$\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(u, v)\}$
dist[v] will be right if u is along the shortest path to v and dist[u] is correct

What happens if we update all of the vertices with the above update?

64

65

67

66

68

69

71

70

Beliman \boldsymbol{N}-Ford (G, s)
${ }_{2}$ for all $v \in V$
$\begin{array}{ll}2 & \begin{array}{c}\text { dist }[v]-\infty \\ \text { prec }[0]\end{array}+\text { nul }\end{array}$
$\begin{array}{ll}3 \\ 4 & \text { dist }[s-0 \\ 5 & \text { pro } \\ 5\end{array}$
for $i \leftarrow-1$ to $||V|-1$
for all edges $(u, v) \in E$
$\begin{aligned} & \text { or all edges }(u, v) \in E \\ & \text { if dist }[v]>\operatorname{dist}[[]]+w(u, v)\end{aligned}$

72

85

89

90

91

92

99

103

107

111

