

E

F.

Ru	nning ti	me of Pr	im' s	
Array	1 MakeHeap θ(V)	V ExtractMin O(V ²)	E DecreaseKey O(E)	Total O(V ²)
Bin heap	θ(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)
Fib heap	θ(V)	O(V log V)	O(E) Kruskal'	O(V log V + E) s: O(E log E)

Ru	nning ti	me of Pr	im' s	
	When should	d we use Kruska	l's or Prim's?	
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	θ(V)	O(V ²)	0(E)	O(V ²)
Bin heap	θ(V)	O(V log V)	O(E log V)	O((V + E) log V O(E log V)
Fib heap	θ(V)	O(V log V)	0(E)	O(V log V + E
			Kruskal' s: O(E log E	

Is Dijkstra's algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v

- The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

47

Running time?					
Depends on the heap implementation					
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total	
Array	0(V)	O(V ²)	0(E)	O(V ²)	
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)	

Ru	nning ti	me?				
Depe	Depends on the heap implementation					
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total		
Array	O(V)	O(V ²)	0(E)	O(V ²)		
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)		
Is th	is an impro	ovement?	If E < V ²	/ log V		

Running time?					
Depends on the heap implementation					
1 MakeHeap	V ExtractMin	E DecreaseKey	Total		
O(V)	O(V ²)	O(E)	O(V ²)		
O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)		
O(V)	O(V log V)	0(E)	O(V log V + E)		
	nds on the 1 MakeHeap O(V) O(V) O(V)	nds on the heap implem 1 MakeHeap [V] ExtractMin 0([V]) 0([V] ²) 0([V]) 0([V] log [V]) 0([V]) 0([V] log [V])	nds on the heap implementation 1 MakeHeap V ExtractMin [E] DecreaseKey 0(V) 0(V ²) 0(E) 0(V) 0(V log V) 0(E log V) 0(V) 0(V log V) 0(E)		

ls Dijkstra's algorithm correct?

Invariant: For every vertex removed from the heap, dist[v] is the actual shortest distance from s to v

The only time a vertex gets visited is when the distance from s to that vertex is smaller than the distance to any remaining vertex

Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

We relied on having positive edge weights for correctness!

Bounding the distance

Another invariant: For each vertex v, dist[v] is an upper bound on the actual shortest distance $\begin{array}{c} \text{Durstrat}(G,s) \\ 1 \quad \text{for all } v \in V \\ 2 \quad dist[v] = \infty \\ 3 \quad dist[v] = \infty \\ 4 \quad dist[v] = -mull \\ 4 \quad dist[v] = -mull \\ 6 \quad while ! \text{ExtractMix}(Q) \\ 7 \quad \text{of while ! Extract}(Q) \\ 8 \quad \text{for all edges}(u, v) \in E \\ 0 \quad \text{if } dist[v] = -dist[u] + w(u, v) \\ 10 \quad \text{DurstratkExt}(Q, v, dist[v]) \\ 12 \quad \text{prev}[v] = u \\ 12 \quad \text{Is this a valid invariant?} \end{array}$

58

Bounding the distance

Another invariant: For each vertex v, $\mathsf{dist}[v]$ is an upper bound on the actual shortest distance

- start off at ∞
- only update the value if we find a shorter distance

An update procedure: for an edge (u,v) $dist[v] = \min \{ dist[v], dist[u] + w(u,v) \}$

$dist[v] = min\{dist[v], dist[u] + w(u, v)\}$

Can we ever go wrong applying this update rule?

We can apply this rule as many times as we want and will never underestimate dist[v]

When will dist[v] be right?

If u is along the shortest path to v and dist[u] is correct

59

(pk)-v

 (\mathbf{v}) (pk)-

(pk)--(v)

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths between all vertices

Easy solution?

All pairs shortest paths

All pairs shortest paths: calculate the shortest paths between all vertices

Run Bellman-Ford from each vertex!

Running time (in terms of E and V)?

105

106

107

108

