

Admin

Assignment 8 out: don't reinvent the wheel

Assignment schedule updated for the rest of the semester

Groups optional this week

Connectedness

Given an undirected graph, for every node $u \in V$, can we reach all other nodes in the graph? Algorithm + running time

Run BFS or DFS-Visit (one pass) and mark nodes as we visit them. If we visit all nodes, return true, otherwise false.

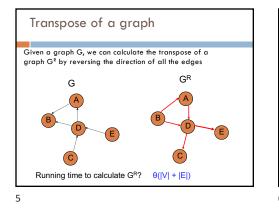
Running time: O(|V| + |E|)

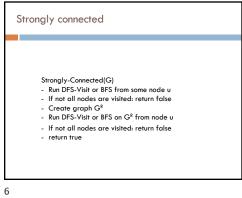
Strongly connected

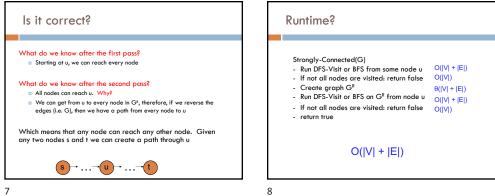
Given a directed graph, can we reach any node v from any other node u?

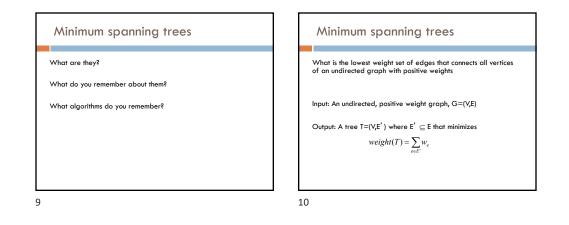
Can we do the same thing?

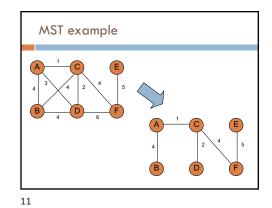
3

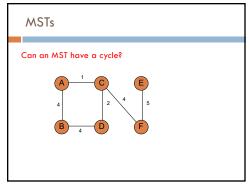


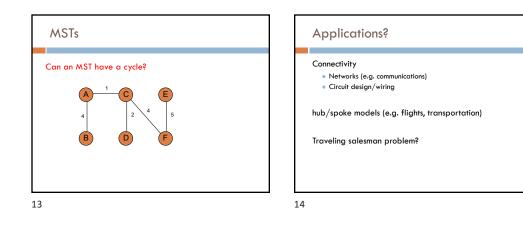


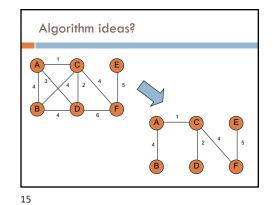


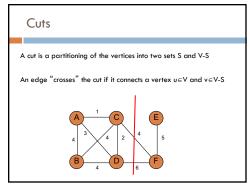


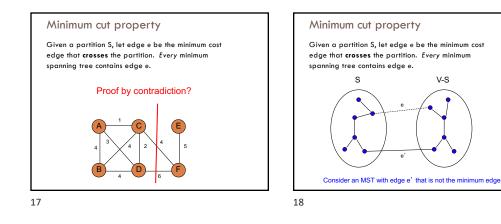


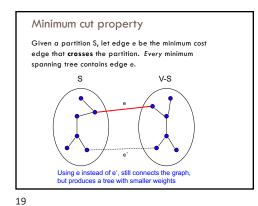




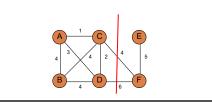


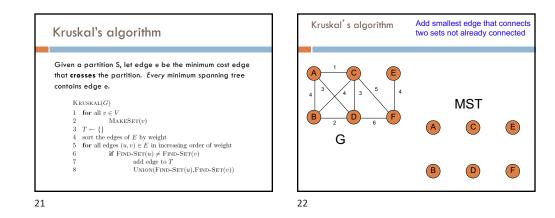


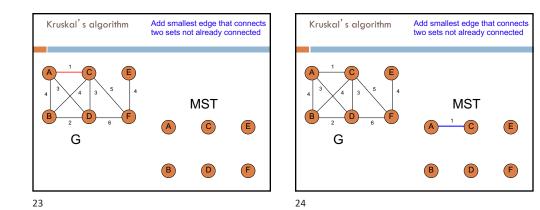


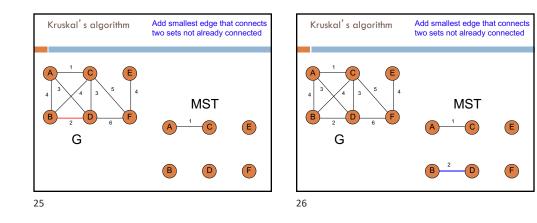


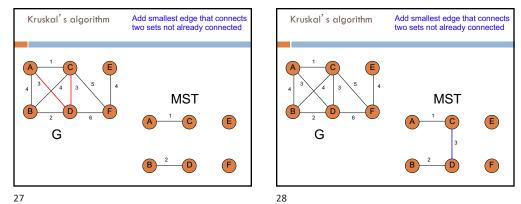
If the minimum cost edge that **crosses** the partition is not unique, then some minimum spanning tree contains edge e.

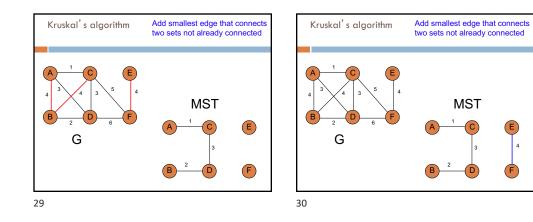






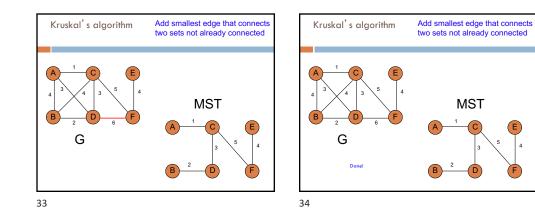


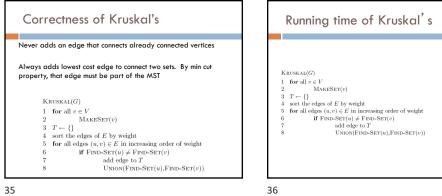


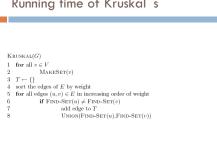


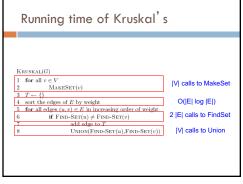


Έ







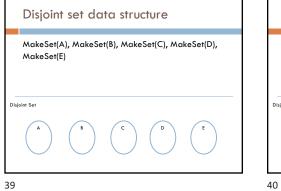


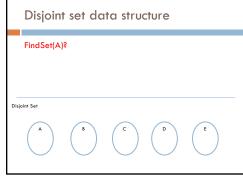
Disjoint set data structures

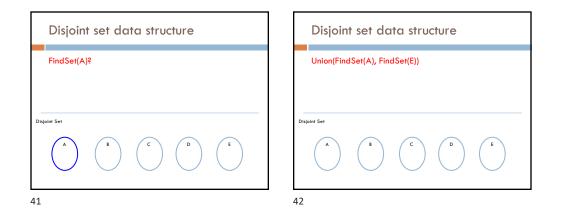
Represents a collection of one or more sets

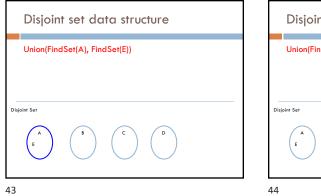
Operations:

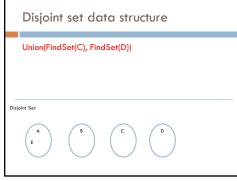
- MakeSet: Add a new value to the collections and make the value it's own set
- FindSet: Given a value, return the set the value is in
- Union: Merge two sets into a single set

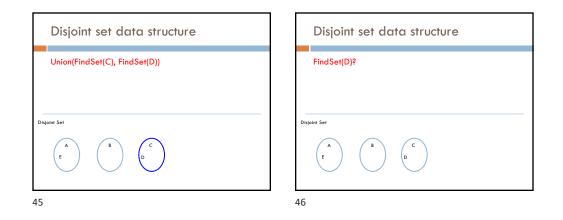






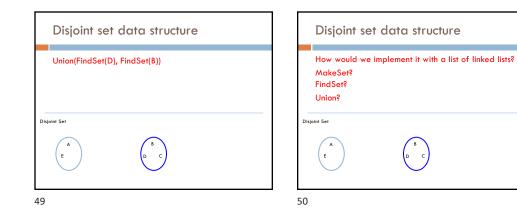


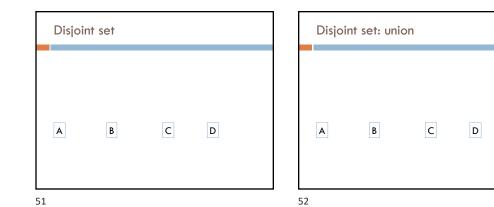


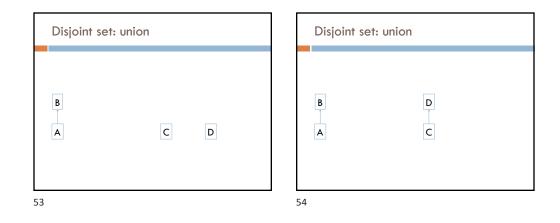


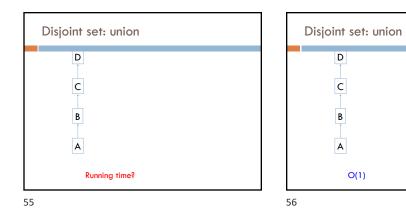
Disjoint set data structure				
FindSet(D)?				
Disjo	sint Set			
	A B C E D D			
7				

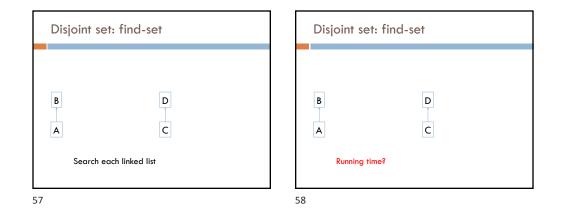
	Disjoint set data structure					
	Union(FindSet(D), FindSet(B))					
Disj	sint Set					
48						

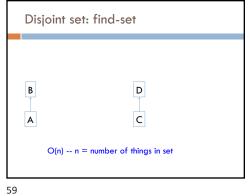




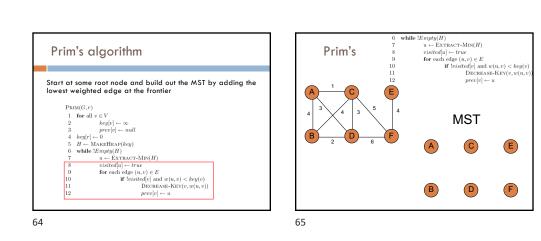


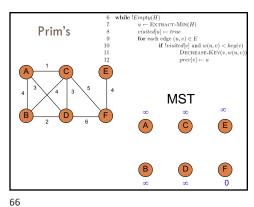


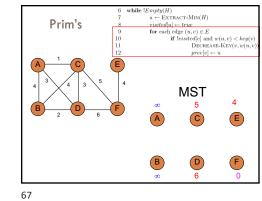


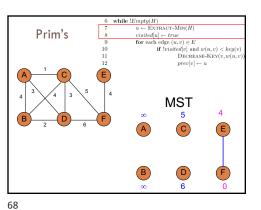


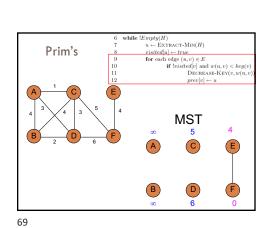
Disjoint set data structure								
O(E log E) +								
	MakeSet (V calls)	FindSet (E calls)	Union (V calls)	Total				
Linked lists	IVI	O(V E)	IVI	O(V E + E log E				
				0(V E)				
Linked lists + heuristics	IAI	O(E log V)	IVI O	(E log V + E log E				
			O(E log E)					

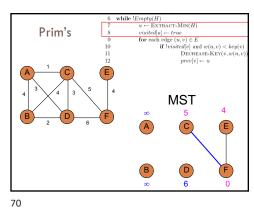


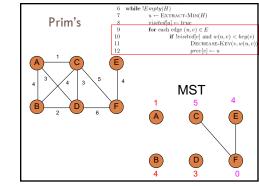












MST

(A

В 4

5

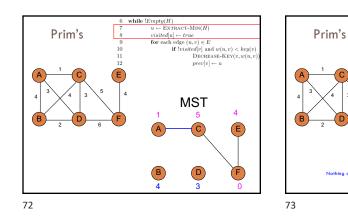
D 3

4

E

F

0



MST

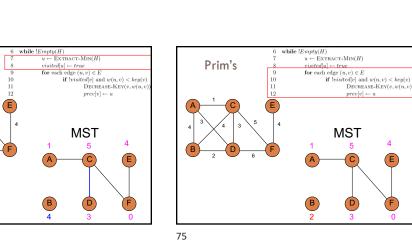
A

В 4

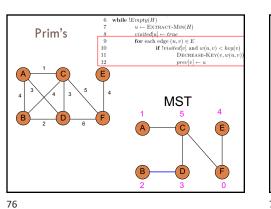
5

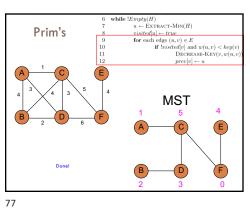
Prim's

74



Nothing changes





Correctness of Prim's?

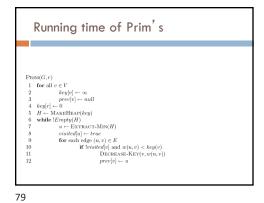
Can we use the min-cut property?

78

Given a partion S, let edge e be the minimum cost edge that crosses the partition. Every minimum spanning tree contains edge e.

Let S be the set of vertices visited so far

The only time we add a new edge is if it's the lowest weight edge from S to V-S



Running time of Prim'	S
$P_{RIM}(G, r)$ 1 for all $v \in V$	
2 $key[v] \leftarrow \infty$ 3 $prev[v] \leftarrow null$	Θ(V)
$\begin{array}{ccc} 4 & key[r] \leftarrow 0 \\ 5 & H \leftarrow MAKEHEAP(key) \end{array}$	1 call to MakeHeap
6 while $!Empty(H)$ 7 $u \leftarrow Extract-Min(H)$	V calls to Extract-Min
8 $visited[u] \leftarrow true$ 9 for each edge $(u, v) \in E$	
10 if $ visited v $ and $w(u, v) < key$ 11 DECREASE-KEY $(v, w(u))$	
12 $prev[v] \leftarrow u$	

Ru	Running time of Prim's									
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total						
Array	θ(V)	O(V ²)	0(E)	O(V ²)						
Bin heap	θ(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)						
Fib heap	θ(V)	O(V log V)	O(E) Kruskal'	O(V log V + E) s: O(E log E)						