

1

Admin
Assignment 8 out: don't reinvent the wheel
Assignment schedule updated for the rest of the
semester
Groups optional this week

5

Strongly connected

Strongly-Connected(G)

- Run DFS-Visit or BFS from some node u
- If not all nodes are visited: return false
- Create graph G^{R}
- Run DFS-Visit or BFS on G^{R} from node u
- If not all nodes are visited: return false
- return true

Runtime?

Strongly-Connected (G)

- Run DFS-Visit or BFS from some node u O(|V|+|E|)
- Run DFS-Visit or BFS from some node u O(IV
- If not all nodes are visited: return false
O(IV)
$\begin{array}{ll}\text { - If not all nodes are visited: return false } & O(|V|) \\ \text { - Create graph } \mathrm{G}^{\mathrm{R}} & \theta(|\mathrm{V}|+\mid \mathrm{El})\end{array}$
- Run DFS-Visit or BFS on G^{R} from node $u \quad \begin{array}{ll}\quad(|V|+|E|) \\ O(V|+|E|)\end{array}$
- If not all nodes are visited: return false $\mathrm{O}(|\mathrm{V}|)$
- return true
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

8

11

15

19

Minimum cut property
If the minimum cost edge that crosses the partition is not unique, then some minimum spanning tree contains edge e

20

25

27

29

30

31

33

34
$T \leftarrow\left\}^{\operatorname{MakeSet}(v)}\right.$
4 sort the edges of E by weight
for all edges $(u, v) \in E$ in increasing order of weight
add edge to T
add edge to T
Union $(\operatorname{Find}-\operatorname{SEt}(u), \operatorname{Find}-\operatorname{SET}(v))$
7
教

35
5
Running time of Kruskal's
${ }_{\text {KRISKAL (G) }}^{1}$
${ }_{2}^{1}$ for all $v \in V \quad \operatorname{MAKESET}(v)$
$\begin{array}{ll}1 \\ 3 & T \leftarrow 6 \\ 4 & \text { sort the }\end{array}$
sort the edges of E by weight
for all edpes $(u, v) \in E$ in incre
Sor all edges of $(u, v) \in E$ in in increasing order of weight
if $\mathrm{F} w \mathrm{~S}$
if Find-SET(u) $\begin{gathered}\text { ando-SET }(v) \\ \text { add edge to } T\end{gathered}$
add edge to T
UNion $(\operatorname{Find}-\operatorname{SET}(u), \operatorname{Fndo}-\operatorname{Set}(v)$

37

40

41

43

42

44

45

47

46

48

59

64

65

Correctness of Prim's?
Can we use the min-cut property?

- Given a partion S let edge e be the minimum cost edge that crosses the
partition. Every mininum spanning tree contains edge e.
Let S be the set of vertices visited so far
The only time we add a new edge is if it's the lowest weight edge
from S to $V-S$

