3/27/24

Admin

|
Assignment 7

Group 7
Hashtables
GRAPHS
David Kauchak
CS 140 — Spring 2024
1 2
Graphs Graphs
| |
What is a graph? A graph is a set of vertices V and a set of edges

(u,v) € E whereuy € V

o
.

3/27/24

Graphs Different types of graphs
e

How do graphs differ2 What are graph Undirected — edges do not have a direction
characteristics we might care about?

/.

5 6
Different types of graphs Different types of graphs

= [
Directed — edges do have a direction Weighted — edges have an associated weight

Different types of graphs

Weighted — edges have an associated weight

Terminology

Path — A path is a list of vertices py,p2,...pk Where
there exists an edge (py,pi+1) € E

10

Terminology

Path — A path is a list of vertices p1,p2,...pk Where
there exists an edge (p;,pi+1) € E
{A,B,D, E, F}

.\

/.

Terminology

Path — A path is a list of vertices p1,p2,...pk Where
there exists an edge (py,pi+1) € E

{C.D}

11

12

Terminolo :
9y Terminology
|) |)
Path — A path is a list of vertices py,p2,...pk Where Cycle?
there exists an edge (py,pi+1) € E
A simple path contains
. no repeated vertices
(often this is implied)
13 14
Terminology Terminology
|] |]

Cycle — A subset of the edges that form a path such
that the first and last node are the same

Cycle — A subset of the edges that form a path such
that the first and last node are the same

Edges: (A,B), (B.D), (D,A)

Path: B,A,D, B /

.\

15

16

Terminology

Cycle — A subset of the edges that form a path such
that the first and last node are the same

cycle? .

Terminology

Cycle — A subset of the edges that form a path such
that the first and last node are the same

not a cycle

17

18

Terminology

Cycle — A subset of the edges that form a path such
that the first and last node are the same

Does this graph have a cycle?

— ®

Terminology

Cycle — A subset of the edges that form a path such
that the first and last node are the same

not a cycle

19

20

3/27/24

Terminology

|]
Cycle — A path p1,p2,...pk Where p1 = pk

cycle

Terminology

Connected — every pair of vertices is connected by a path

Is this graph
connected?

21

22

Terminology

Connected — every pair of vertices is connected by a path

connected

Terminology

Connected — every pair of vertices is connected by a path

Is this graph
connected?

23

24

3/27/24

Terminology

Connected — every pair of vertices is connected by a path

not connected .

Terminology

|]
Strongly connected (directed graphs) —
Every two vertices are reachable by a path

Is this graph
strongly connected?

— ®

25

26

Terminology

|
Strongly connected (directed graphs) —
Every two vertices are reachable by a path

not strongly
connected

— ®

Terminology

|
Strongly connected (directed graphs) —
Every two vertices are reachable by a path

Is this graph
strongly connected?

\

27

28

3/27/24

Terminology

|]
Strongly connected (directed graphs) —
Every two vertices are reachable by a path

not strongly

connected .

v

Terminology

|]
Strongly connected (directed graphs) —
Every two vertices are reachable by a path
Is this graph
strongly connected? .

-

29

30

Terminology

|
Strongly connected (directed graphs) —
Every two vertices are reachable by a path

strongly
connected

\

Terminology

|
Weakly connected (directed graphs) —
graph is connected when considered as undirected graph

weakly
connected

— ®

31

32

3/27/24

Different types of graphs
[

What is a tree (in our terminology)?

Different types of graphs
[

Tree — connected, undirected graph without any cycles

33

34

Different types of graphs

| e
Tree — connected, undirected graph without any cycles

k<°/

need to specify root

Different types of graphs

B e
Tree — connected, undirected graph without any cycles

35

36

3/27/24

Different types of graphs

|]
DAG - directed, acyclic graph

Different types of graphs
[

Complete graph — an edge exists between every node

37

38

Different types of graphs
o

Bipartite graph — a graph where every vertex can be partitioned into two
sets X and Y such that all edges connect a vertex u € X and a vertex v € Y

®—

When do we see graphs in
real life problems?

Transportation networks (flights, roads, etc.)
Communication networks

Web

Social networks

Circuit design

Bayesian networks

39

40

10

3/27/24

Representing graphs Representing graphs
|) |)
Adjacency list — Each vertex u € V contains an
adjacency list of the set of vertices v such that there
exists an edge (u,v) € E
(8 —p]
[8: }-{A}—{B]
® [l
[o:] (8] [E]
41 42

Representing graphs
[

Adjacency list — Each vertex u € V contains an
adjacency list of the set of vertices v such that there
exists an edge (u,v) € E

rd

EEE
=] [

[
= =]
L]

Representing graphs

Adjacency matrix — A |V | x| V| matrix A such that:

{1 if (i, j)e E

a, = .
0 otherwise

if

ABCDE

® A01010
B1001 0

./ C00010
D11101

E0O0O0 10

43

44

11

Representing graphs

|

Adjacency matrix = A |V |x|V| matrix A such that:
y i, j)eE

a =

7710 otherwise

>

(oo Ne PN

>

o
O—~0c0co 0
oO-~o0ocgcom

=10

(e o]
a0 =

©
mooO W

Representing graphs

|
Adjacency matrix — A |V |x|V| matrix A such that:

1 ifG,j)eE
a =
710 otherwise

>

@
O -~ o =0 P
oO-~o0o-—~mw
o -~ oloo O
_‘O—k—‘—kc
oO-~0oco m

®

moo

45

46

Represenﬁng grcphs
Adjacency matrix = A |V |x|V| matrix A such that:

U ifG.j)eE
%10 otherwise

®

O w>

o-~0o P
co-~w
cooco O
- =g
ocooco m

EO0OO0O0 10

Representing graphs

Adjacency matrix = A |V | x| V| matrix A such that:

1 if(,j)eE
a =
7|0 otherwise

. Is it always
symmetric?

N

47

48

3/27/24

12

|
Adjacency matrix = A |V [x|V

0 otherwise

Representing graphs

| matrix A such that:

{1 if (i, /) e E
H,, =

Adjacency list vs.
adjacency matrix

Adjacency list Adjacency matrix

Pros and cons?

49

50

Adjacency list vs.
adjacency matrix

Adjacency list

Adjacency matrix

Sparse graphs (e.g. web)
Space efficient

Must traverse the adjacency list
to discover is an edge exists

Dense graphs

Constant time lookup to discover
if an edge exists

Simple to implement

For non-weighted graphs, only
requires boolean matrix

Can we get the best of both worlds?

Sparse adjacency matrix
[

Rather than using an adjacency list, use an adjacency
hashtable

hashtable [B,D]
hashtable [A,D]
hashtable [D]

hashtable [D]

[D:]| [hashtable [A,B,C,E]

51

52

3/27/24

13

3/27/24

Sparse adjacency matrix
[

Constant time lookup

Fairly space efficient

Not good for dense graphs, why?

o] [reshavereca |
& [rashabe]

Weighted graphs
|
Adjacency list

store the weight as an additional field in the list

53

54

Weighted graphs
[

Adjacency matrix

{weight if (i, /) e E
ar/ =

0 otherwise ABCDE
A08 030

8 B80 020
3 CO00 0100

2 2 D32100 13
EO0OO0 0130

Graph algorithms/questions

|
Graph traversal (BFS, DFS)

Shortest path from a to b
unweighted
weighted positive weights
negative/positive weights

Minimum spanning trees
Are all nodes in the graph connected?

Is the graph bipartite?

55

56

14

3/27/24

DFS and BFS
| —

How are they implemented?

What would be the result starting at A2
If you ask for the children of a node,
they’re given in alphabetical order.

Run-time (in terms of V and E):
- adjacency list
- adjacency matrix

Search implemented
[—

TREEBES(T) TREEDFS(T)
1 ENQUEUE(Q. RooT(I')) 1 Pusi(s. Roor(1))
2 while I 2 while IEnpry(5)
3 DEQUEVE(Q) 3 w— Por(s)
1 Visr(v 1 Vistr(v)
5 for all ¢ & CHILDREN (¢) 5 for all ¢ CHILDREN (¢)
6 EnquEve(Q.c) O Pusi(s.c)
TreeDFS(v)
visit(v)

if not leaf(v)
for all ¢ in children(x)
TreeDFS(v)

57

58

BFS
[

TRERBFS(T)
1 ENQUEUE(Q, RooT(T))
2 while IEMPTV(Q)

3 v — DEQUEUE(Q)

4 VisiT(v)

5 for all ¢ € CriLDREN ()
6 ENQUEUE(Q.¢)

BFS
[

TRERBFS(T)
1 ENQUEUE(Q, RooT(T))
2 while IEMPTV(Q)

3 v — DEQUEUR(Q)

4 Visir(v)

5 for all ¢ € CriLDREN (1)
6 ENQUEUE(Q.c)

ABDECFG

59

60

15

3/27/24

DFS

TREEDFS(T)

1 Pusi(S, Roor(T))

2 while IEMPTY(S)

3 v Por(s)

4 Visir(v)

5 for all ¢ & CriLbREN ()
6 Pusi(s.c)

DFS

TREEDES(T)
1 Pusi(S, Root(T))
2 while [Eury(S)

3 v Por(s)

1 Vistr(v)

5 for all ¢ & CHiLDREN(v)
6 Pust(S,c)

AEGDBFC

61

62

DFS

TreeDFS(v)
visit(v)
if not leaf(v)
for all ¢ in children(x)
TreeDFS(v)

What changes?

DFS

TreeDFS(v)
visit(v)
if not leaf(v)
for all ¢ in children(x)
TreeDFS(v)

ABCFDEG

63

64

16

3/27/24

Running time of BFS/DFS
frm

Adjacency list

How many times does it visit each vertex?

How many times is each edge traversed?

6(|VI+]|E|) - for trees, i.e., assuming a connected graph
Adjacency matrix

For each vertex visited, how much work is done?

8(1V|?) - for trees, i.e., assuming a connected graph

TREEBFS(T) TREEDFS(T)

1 ENQUECE(Q, RooT(T)) 1 Pusn(s, Roo(1))

2 while IEMPTY(Q) 2 while IEAPTY(S)

3 v — DEQUEUE(Q) 3 v — Pop(s)

4 Visr(v 4 VisiT(v)

5 for all ¢ € CHILDREN(v) 5 for all ¢ € CHILDREN(v)
6 ENQUEUE(Q. <) 6 Pusn(S.c)

DFS/BFS
|]
Do they visit all of the nodes?

If the graph is connected or strongly connected

TREEBFS(T) TREEDFS(T)
1 ENQUEUE(Q, RooT(T) 1 Pusi(s. Root())

2 while IEMPTY(Q) 2 while IEMPTY(S)

3 v — DEQUEUE(Q) 3 v — Pop(s)

1 Vistr(v) n Visi(v)

5 for all ¢ € CHILDREN(v) 5 for all ¢ € CHILDREN(2)
6 ENQUEUE(Q. c) 6 PusH(S.c)

65

66

DFS/BFS for graphs
[

What needs to change for graphs?

Need to make sure we don't visit a node multiple times

©
® 6

BFS for graphs
o

What order will BFS visit starting at A (again, assume
children are enumerated alphabetically)?

©
® 6

67

68

17

3/27/24

BFS(G.s)
B FS for gra phS 1 foreachwveV distance variable keeps
2 dist[v] — track of how far from
| j g*i the starting node and
Nau heth " th
What order will BFS visit starting at A (again, assume 5 while !EMPTY(Q) :vo:e)lee ve seentne
children are enumerated alphabetically)? 6 u — DEQUEUE(Q)
7 VisiT(u)
8 for each edge (u,v) € E /
ABDECFG 9 if dist[v] = oo /
10 ENQUEVE(Q.v)/
11 dist[v] — distlu] +1
69 70
TREEBFS(T')
BFS(G,s) 1 ENQUEUE(Q, Root(T))
1 foreachwveV 2 while [EMPTY(Q) DFS on grqphs
2 dist[v] = o0 3 v — DEQUEUE(Q)
3 distls] =0 4 VisiT(v) |
4 ETQ;“:';:‘;:\E?T:)(Q) 5 for all ¢ € CHILDREN(v) DFS(G)
5 while |E ‘ . >
6 u — DEQUEVE(Q) 6 ENQUEUE(Q: c) 1 forallveV
7 Visir(v) 2 visited[u] — false
8 for each edge (u,v) € E 3 forallveV
9 if dist[o] = 0o 4 if lvisited[v]
10 ENQUEUE(Q,v) 5 DFS-VisiT(v)
11 dist[v] — dist[u] + 1
DFS-VisiT(u)
. 1 visited[u] — true
2 PREVISIT(U)
3 for all edges (u,v) € E
4 if lvisited[v]
.—. 5 DFS-VisiT(v)
6 PosTVIsiT(U)
71 72

18

3/27/24

DFS on graphs DFS on graphs
|) |)
DFS(G) DFS(G)
1 foralveV mark all nodes as 1 foralveV
2 visited[u] — false not visited 2 visited[u] — false
3 forallveV 3 forallveV until all nodes have been
4 if lvisited[v] 4 if lvisited(v] visited repeatedly call
5 DES-VisiT(v) 5 DFS-Visit(v) DFS-Visit
DFS-VisiT(u) DFS-VisiT(u)
1 wisited[u] — true 1 wisited[u] — true
2 PrEVISIT(U) 2 PrEVISIT(U)
3 for all edges (u,v) € E 3 for all edges (u,v) € E
4 if lvisited[v] 4 if lvisited[v]
5 DFS-VisiT(v) 5 DFS-Visit(v)
6 PosTVIsIT(U) 6 PosTVIsIT(U)
73 74

DFS for graphs
o

What order will DFS visit starting at A (again, assume
children are enumerated alphabetically)?

DFS(G)
1 forall
2

visited(u] — false

3 forall v
4

if tuisitedlo]
s - .

DFS-Visir(u)

1 visitedju] — true

2 PreVisiT(v)

3 for all edges (u,0) € B

4 if lvisited[v]

5 DFS-Visir(v)
6 PostVisit(v)

DFS for graphs
o

What order will DFS visit starting at A (again, assume
children are enumerated alphabetically)?

DFS(G)
for all v

ABCEDFG

ted[u] — false

v
if tuisitedlo]
DFS-Visit(v) .

DFS-Visrt(u)

1 visitedfu] — true

2 PreVisiT(v)

3 for all edges (u,0) €
4 if luisitedlv]
5
6

DES-VisiT(v)
PostVisiT(v)

75

76

19

3/27/24

What does DFS do? Running time of graph BFS/DFS
|) |)
Finds connected components Nothing changes!
Each call to DFS-Visit from DFS starts exploring a new Adm:r;x l"s'E‘)
set of connected components Adjacency matrix
o(lvi?
Helps us understand the structure/connectedness of a
graph
77 78
DFS and BFS
|]
How are they implemented?
What would be the result starting at A2 If you ask for the.
children of a node, they're given in alphabetical order.
H [o] nd ouf Run-fime (in terms of V and E):
aelocency matix
79 80

20

BFS/DFS for graphs

What order will BFS/DFS visit starting at A (again, assume children are
enumerated alphabetically)?

®

81

3/27/24

21

