
3/15/24

1

HASHTABLES
David Kauchak
CS 140 – Spring 2024

1

Admin

Assignment 5 and 6 back soon

Assignment 7 our and due on Sunday

Normal group session schedule this week

2

Hashtables

Constant time insertion and search (and deletion in some
cases) for a large space of keys

Applications
¤ Does x belong to S?
¤ I’ve found them very useful (go by many names, maps, dictionaries,

…)
¤ compilers

¤ databases
¤ search engines

¤ storing and retrieving non-sequential data
¤ save memory over an array

4

Hashtables

Constant time insertion and search (and deletion in some
cases) for a large space of keys

For this class, we’ll just think of them as a collection of keys

For many applications/implementations, there is a value
associated with the key, i.e., key/value pair (though lookup is
still exclusively based on the key)

5

3/15/24

2

Why not just arrays aka
direct-address tables?

Array

universe of keys - U
array must be as large
as the universe of keys

11

Why not just arrays?

Array

array must be as large
as the universe of keys

space of actual keys is
often much smaller than
the actual keys

actual
keys, n

universe of keys - U

12

Why not arrays?

Think of indexing all last names < 10 characters
¤ Census listing of all last names

http://www.census.gov/genealogy/names/dist.all.last

n 88,799 last names

¤ What is the size of our space of keys?
n 2610 = a big number

¤ Not feasible!

¤ Even if it were, not space efficient

13

The load of a table/hashtable

m = number of possible entries in the table
n = number of keys stored in the table
α = n/m is the load factor of the hashtable

What is the load factor of the last example?
¤ α = 88,799 / 2610 would be the load factor of last names using direct-

addressing

The smaller α, the more wasteful the table

The load also helps us talk about run time

14

http://www.census.gov/genealogy/names/dist.all.last

3/15/24

3

Hash function, h

A hash function is a function that maps the universe of
keys to the slots in the hashtable

universe of keys - U

m << |U|

hash function, h: U èm

15

Hash function, h

A hash function is a function that maps the universe of
keys to the slots in the hashtable

universe of keys - U

m << |U|

hash function, h: U èm

16

Hash function, h

A hash function is a function that maps the universe of
keys to the slots in the hashtable

universe of keys - U

m << |U|

hash function, h: U èm

17

Hash function, h

What can happen if m < |U|?

universe of keys - U

m << |U|

hash function, h: U èm

18

3/15/24

4

Collisions

If m < |U|, then two keys can map to the same position in the
hashtable (pidgeonhole principle)

universe of keys - U

m << |U|

hash function, h

19

Collisions

A collision occurs when h(x) = h(y), but x ≠ y

A good hash function will minimize the number of collisions

Because the number of hashtable entries is less than the possible
keys (i.e. m < |U|) collisions are inevitable!

Collision resolution techniques?

20

Collision resolution by chaining

Hashtable consists of an array of linked lists

When a collision occurs, the element is added to linked list at
that location

If two entries x ≠ y have the same hash value h(x) = h(y),
then T(h(x)) will contain a linked list with both values

21

ChainedHashInsert()

Insertion

ChainedInsert(x):
 entry = h(x)
 insert x at the head of T[entry]

22

3/15/24

5

Insertion

h() hash function is a mapping from
the key to some value < m

ChainedInsert(x):
 entry = h(x)
 insert x at the head of T[entry]

23

Insertion

h()

ChainedInsert(x):
 entry = h(x)
 insert x at the head of T[entry]

24

Deletion

Search though the list!

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

26

Deletion

ChainedHashDelete()

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

27

3/15/24

6

Deletion

h()

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

28

Deletion

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

29

Deletion

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

30

Deletion

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

31

3/15/24

7

Search

ChainedHashSearch()

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

32

Search

h()

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

33

Search

ChainedHashSearch()

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

34

Search

ChainedHashSearch()

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

35

3/15/24

8

Search

ChainedHashSearch()

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

36

Running time

Θ(1)

O(length of the chain)

O(length of the chain)

ChainedSearch(x):
 entry = h(x)
 search for x in list T[entry]

ChainedDelete(x):
 entry = h(x)
 delete x at the list at T[entry]

ChainedInsert(x):
 entry = h(x)
 insert x at the head of T[entry]

37

Length of the chain

Worst case?

38

Length of the chain

Worst case?
¤ All elements hash to the same location

¤ h(k) = 4

¤ n

…

39

3/15/24

9

Length of the chain

Average case:
Depends on how well the hash function distributes the keys

What is the best we could hope for a hash function?
n simple uniform hashing: an element is equally likely to end up in any of

the m slots

Under simple uniform hashing what is the average length of a
chain in the table?

n n keys over m slots = n / m = α

40

Average chain length

If you roll a fair m sided die n times, how many times
are we likely to see a given value?

For example, 10 sided die:
1 time

l 1/10

100 times
l 100/10 = 10

41

Search average running time

Two cases:
¤ Key is not in the table

n must search all entries
n Θ(1 + α)

¤ Key is in the table
n on average search half of the entries
n O(1 + α)

42

Hash functions

What makes a good hash function?
¤ Approximates the assumption of simple uniform hashing

¤ Deterministic – h(x) should always return the same value
¤ Low cost – if it is expensive to calculate the hash value (e.g. log n) then

we don’t gain anything by using a table

Challenge: we don’t generally know the distribution of the keys
¤ Frequently data tend to be clustered (e.g. similar strings, run-times, SSNs).

A good hash function should spread these out across the table

43

3/15/24

10

Hash functions

What are some hash functions
you’ve heard of before?

44

Division method

h(k) = k mod m

m k h(k)

11 25
11 1
11 17
13 133
13 7
13 25

45

Division method

h(k) = k mod m

m k h(k)

11 25
11 1
11 17
13 133
13 7
13 25

3
1
6
3
7
12

46

Division method

m k bin(k) h(k)

8 25 11001

8 1 00001

8 17 10001

Don’t use a power of two. Why?

47

3/15/24

11

Division method

Don’t use a power of two. Why?

if h(k) = k mod 2p, the hash function is just the lower p bits of the
value

m k bin(k) h(k)

8 25 11001 1

8 1 00001 1

8 17 10001 1

48

Division method

Good rule of thumb for m is a prime number not too
close to a power of 2

Pros:
l quick to calculate

l easy to understand

Cons:
l keys close to each other will end up close in the hashtable

49

Multiplication method

Multiply the key by a constant 0 < A < 1 and extract
the fractional part of kA, then scale by m to get the
index

ë ûë û)()(kAkAmkh -=

extracts the fractional
portion of kA

50

Multiplication method

Common choice is for m as a power of 2 and

Book has other heuristics

6180339887.02/)15(=-=A

ë ûë û)()(kAkAmkh -=

52

3/15/24

12

Multiplication method

m k A

8 15 0.618

8 23 0.618

8 100 0.618

kA h(k)

ë ûë û)()(kAkAmkh -=

53

Multiplication method

m k A

8 15 0.618

8 23 0.618

8 100 0.618

9.27 floor(0.27*8) = 2

kA h(k)

14.214 floor(0.214*8) = 1

61.8 floor(0.8*8) = 6

ë ûë û)()(kAkAmkh -=

54

Other hash functions

http://en.wikipedia.org/wiki/List_of_hash_functions

cyclic redundancy checks (i.e. disks, cds, dvds)

Checksums (i.e. networking, file transfers)

Cryptographic (i.e. MD5, SHA)

55

Open addressing

Keeping around an array of linked lists can be inefficient and a
hassle

Like to keep the hashtable as just an array of elements (no
pointers)

How do we deal with collisions?
¤ compute another slot in the hashtable to examine

56

http://en.wikipedia.org/wiki/List_of_hash_functions

3/15/24

13

Hash functions with
open addressing

Hash function must define a probe sequence which is the list of
slots to examine when searching or inserting

The hash function takes an additional parameter i which is the
number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable
entry. Why?

{ h(k,0), h(k,1), h(k,2), …, h(k, m-1) } is a permutation of
{ 0, 1, 2, 3, …, m-1 }

57

Hash functions with
open addressing

Hash function must define a probe sequence which is the list of
slots to examine when searching or inserting

The hash function takes an additional parameter i which is the
number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable
entry. Why?

If not, we wouldn’t explore all the possible
location in the table!

58

Probe sequence

h(k, 0)

59

Probe sequence

h(k, 1)

60

3/15/24

14

Probe sequence

h(k, 2)

61

Probe sequence

h(k, 3)

62

Probe sequence

h(k, …)

…

must visit all locations

63

Open addressing: Insert

64

3/15/24

15

Open addressing: Insert

get the first hashtable
entry to look in

65

Open addressing: Insert

follow the probe
sequence until we find
an open entry

66

Open addressing: Insert

return the open entry

67

Open addressing: Insert

hashtable can fill up

68

3/15/24

16

Open addressing: search

69

Open addressing: search

70

Open addressing: search

“breaks” the probe sequence

71

Delete

h(k, 0) h(k, 1)h(k, 2)

k

72

3/15/24

17

Delete

h(k, 0) h(k, 1)h(k, 2)

Can we just delete this node?

k

73

Delete

h(k, 0) h(k, 2)

Can we just delete this node?

k

74

Delete

h(k, 0) h(k, 2)

Can we just delete this node?

No! Now if we search for k we’ll mistakenly think it’s not there!

h(k, 1)

k

75

Open addressing: delete

Two options:
¤ mark node as “deleted” (rather than null)

n modify search procedure to continue looking if a “deleted”
node is seen

n modify insert procedure to fill in “deleted” entries
n increases search times

¤ if a lot of deleting will happen, use chaining

76

3/15/24

18

Probing schemes

Linear probing – if a collision occurs, go to the next slot
¤ h(k,i) = (h(k) + i) mod m

¤ Does it meet our requirement that it visits every slot?
¤ for example, m = 7 and h(k) = 4

h(k,0) = 4
h(k,1) = 5
h(k,2) = 6
h(k,3) = 0
h(k,3) = 1

77

Linear probing: search

h(, 0)

78

Linear probing: search

h(, 1)

79

Linear probing: search

h(, 2)

80

3/15/24

19

Linear probing: search

h(, 3)

81

Linear probing: search

h(, 3)

82

Linear probing

Problem:
primary clustering – long runs of occupied slots tend to
build up and these tend to grow

any value here results in an
increase in the cluster

become more and more probable
for a value to end up in that range

83

Quadratic probing

h(k,i) = (h(k) + c1i + c2i2) mod m

Rather than a linear sequence, we probe based on a
quadratic function

Problems:
l must pick constants and m so that we have a proper probe

sequence

l if h(x) = h(y), then h(x,i) = h(y,i) for all i

l secondary clustering

84

3/15/24

20

Double hashing

Probe sequence is determined by a second hash function

h(k,i) = (h1(k) + i(h2(k))) mod m

Problem:
l h2(k) must visit all possible positions in the table

85

Running time of insert and search for
open addressing

Depends on the hash function/probe sequence

Worst case?
¤ O(n) – probe sequence visits every full entry first before

finding an empty

86

Running time of insert and search for
open addressing

Average case?

We have to make at least one probe

87

Running time of insert and search for
open addressing

Average case?

What is the probability that the first probe will not be
successful (assume uniform hashing function)?

α

88

3/15/24

21

Running time of insert and search for
open addressing

Average case?

What is the probability that the first two probed slots
will not be successful?

~α2
why
‘~’?

89

Running time of insert and search for
open addressing

Average case?

What is the probability that the first two probed slots
will not be successful

~α2𝑛 − 1
𝑚 − 1Technically, second probe is:

90

Running time of insert and search for
open addressing

Average case?

What is the probability that the first three probed slots will
not be successful?

~α3

91

Running time of insert and search for
open addressing

Average case: expected number of probes
sum of the probability of making 1 probe, 2 probes, 3
probes, …

...1][32 ++++= aaaprobesE

å =
=

m

i
i

0
a

å¥

=
<

0i
ia

a-
=
1
1

92

3/15/24

22

Average number of probes

a-
=
1
1][probesE

93

How big should a hashtable be?

A good rule of thumb is the hashtable should be around half
full

What happens when the hashtable gets full?
Copy: Create a new table and copy the values over

n results in one expensive insert

n simple to implement

Amortized copy: When a certain ratio is hit, grow the table, but copy
the entries over a few at a time with every insert

n no single insert is expensive and can guarantee per insert performance

n more complicated to implement

94

Handouts/exercises

95

Questions

Why can’t we just use an array?

What is a hash function? How does it differ from the
hash_code method in Java?

What are the two ways we deal with collisions?

Why is it important that the probe sequence visits
every spot in the hashtable?

96

3/15/24

23

Questions

What are three potential probing mechanisms?

If we insert random data into a hashtable, what is the
worst case running time for searching for an item?

If an open-addressed hashtable is half full, on average,
how many entries would we expect to search before
finding an open one? 75% full?

If we plan to do a lot of deleting, what type of hashtable
should we use?

97

Questions

What is the largest α can be for a hashtable with
chaining? Open-addressed?

98

Fill in the table for division method

h(k) = k mod m

m k h(k)

11 25
11 1
11 17
13 133
13 7
13 25

99

Fill in the table for multiplication method

m k A

8 15 0.618

8 23 0.618

8 100 0.618

kA h(k)

ë ûë û)()(kAkAmkh -=

100

