

1

3

2

4

$$
\begin{array}{ll}
\Rightarrow x & x \wedge u \Rightarrow z \\
\Rightarrow y & \bar{x} \vee \bar{y} \vee \bar{z}
\end{array}
$$

5

A horn formula is a set of implications and negative clauses:

```
=>x
    x\wedgeu=>z
=>y
    \overline{x}\vee\overline{y}\vee\overline{z}
```

LHS: positive literals anded RHS: single positive literal

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

6

Goal

Given a horn formula, determine if the formula is
satisfiable, i.e. an assignment of true/false to the variables that is consistent with all of the implications/causes

$$
\begin{array}{ll}
\Rightarrow x & x \wedge u \Rightarrow z \\
\Rightarrow y & \bar{x} \vee \bar{y} \vee \bar{z}
\end{array}
$$

$u x y z$
0110

7

9
9

A greedy solution?		
$\Rightarrow x$	$x \wedge z \Rightarrow w$	$\begin{aligned} & w \wedge y \wedge z \Rightarrow x \\ & \bar{w} \vee \bar{x} \vee \bar{y} \end{aligned}$
$x \Rightarrow y$	$x \wedge y \Rightarrow w$	
	w 0	
	$\times 1$	
	y 0	
	z 0	

A greedy solution?		
$\Rightarrow x$	$x \wedge z \Rightarrow w$	$\begin{aligned} & w \wedge y \wedge z \Rightarrow x \\ & \bar{w} \vee \bar{x} \vee \bar{y} \end{aligned}$
$x \Rightarrow y$	$x \wedge y \Rightarrow w$	
	w 0	
	$\times 1$	
	y 1	
	z 0	

11

12

13
set all variables to false
for all implications i
if $\operatorname{Empty}(\operatorname{LHS}(i))$
RHS $(i) \leftarrow$ true
set all variables of the implications of the form " $\Rightarrow x$ " to true
changed \leftarrow true
while changed
changed \leftarrow false
for all implications i
if $\operatorname{LHS}(i)=$ true and $!\operatorname{RHS}(i)=$ true
RHS $(i) \leftarrow$ true
changed $=$ true
for all negative clauses c
if $c=$ false
return true
return false

15

A greedy solution

Horn(H)
1 set all variables to false
for all implications i
if $\operatorname{Empty}(\operatorname{LHS}(i))$
$\operatorname{RHS}(i) \leftarrow$ true
changed \leftarrow true
while changed
changed \leftarrow false
for all implications i
if LHS $(i)=$ true and $!$ RHS $(i)=$ true
RHS $(i) \leftarrow$ true
changed $=$ true
for all negative clauses c
if $c=$ false
return false
5 return true

14

A greedy solution

$\operatorname{Horn}(H)$

 1 set all variables to false
 for all implications \(i\)
 if $\operatorname{Empty}(\operatorname{LHS}(i))$
RHS $(i) \leftarrow$ true
changed \leftarrow true
while changed
changed \leftarrow false
if the all variables of
for all implications i
if $\mathrm{LHS}(i)=$ true and $\operatorname{RHS}(i)=$ true \quad implication are true,
$\operatorname{RHS}(i) \leftarrow$ true $(i)=$ true then set the rhs

RHS $(i) \leftarrow$ true	variable to true

 changed \(=\) true
 for all negative clauses c
if $c=$ false
return false
return true
see if all of the negative clauses are satisfied
return true
for all negative clause
for all negative clause

orn (H)
set all variables to false
for all implications i
if $\operatorname{Empty}(\operatorname{LHS}(i))$
RHS $(i) \leftarrow$ true
changed \leftarrow true
chang
for all implicatio
if $\operatorname{LHS}(i)=$ true and !RHS $(i)=$ true
rue

 :०.
 \(\because \because\)
 -•:
 while changed
changed \leftarrow false
c
eturn false
eturn false
15 return true
\qquad

17

19

A greedy solution

Horn(H)
1 set all variables to false
for all implications i
if $\operatorname{Empty}(\operatorname{LHS}(i))$
RHS $(i) \leftarrow$ true How is this a greedy algorithm?
changed \leftarrow true
while changed
changed \leftarrow false
for all implications i
if $\mathrm{LHS}(i)=$ true and $!\operatorname{RHS}(i)=$ true
RHS $(i) \leftarrow$ true
changed $=$ true
: : : $\because \because:$ $\because \because: \%$
If our algorithm returns an assignment, is it a valid
If our algorithm returns an assignment, is it a valid
assignment?
assignment?
HORN(H)
HORN(H)
set all variables to false
set all variables to false
for all implications is
for all implications is
changed }\leftarrow\mathrm{ true
changed }\leftarrow\mathrm{ true
while changed
while changed
changed }\leftarrow\mathrm{ false
changed }\leftarrow\mathrm{ false
if LHS(i) = true and !RHS(i) =true
if LHS(i) = true and !RHS(i) =true
l}\begin{array}{l}{\textrm{RHS}(i)\leftarrow\mathrm{ true }}
{\mathrm{ changed = true }}
l}\begin{array}{l}{\textrm{RHS}(i)\leftarrow\mathrm{ true }}
{\mathrm{ changed = true }}
for all negative clauses
for all negative clauses
if cof false
if cof false
return true return false
return true return false

21

Correctness of greedy solution

If our algorithm returns an assignment, is it a valid assignment?
don't stop until all implications with all Ihs elements true have rhs true

```
\(\qquad\)
``` turn false
```

HORN(H)
HORN(H)
set all variables to false
set all variables to false
for all impications(LHS(i)
for all impications(LHS(i)
RHS(i)\leftarrowtrue
RHS(i)\leftarrowtrue
changed }\leftarrow\mathrm{ true
changed }\leftarrow\mathrm{ true
while changed
while changed
changed }\leftarrow\mathrm{ false
changed }\leftarrow\mathrm{ false
changed = true
changed = true
for all negative clauses
for all negative clauses
return true return false
return true return false
15 return true
15 return true

23


22
set all variables to false
set all variables to false
for all implications i
for all implications i
if Empty(LHS(i))
if Empty(LHS(i))
changed\leftarrowtrue}\operatorname{RHS}(i)\leftarrow\mathrm{ true
changed\leftarrowtrue}\operatorname{RHS}(i)\leftarrow\mathrm{ true
changed זtrue
changed זtrue
changed }\leftarrow\mathrm{ false
changed }\leftarrow\mathrm{ false
if LHS(i) = true and !RHS(i)=true
if LHS(i) = true and !RHS(i)=true
RHS(i)\leftarrowtrue
RHS(i)\leftarrowtrue
for all negative clauses
for all negative clauses
if c=false
if c=false
return true
return true

25

Running time?	
```\(\operatorname{Horn}(H)\) set all variables to false for all implications \(i\) if \(\operatorname{Empty}(\operatorname{LHS}(i))\) RHS \((i) \leftarrow\) true changed \(\leftarrow\) true while changed changed \(\leftarrow\) false for all implications \(i\) if LHS \((i)=\) true and \(!\) RHS \((i)=\) true \(\operatorname{RHS}(i) \leftarrow\) true changed \(=\) true```	$\mathrm{O}(\mathrm{nm})$   $\mathrm{n}=$ number of
```for all negative clauses c if c=false return false return true```	$\mathrm{m}=$ number of formulas

27


26


28


29

## Simplifying assumption: frequency only

Assume that we only have character frequency information for a file

ACADAADB...
$\square$
$\square$
$\square$
$\square$
:---:
A
B
C
D

30

Fixed length code	:\%:。
Use $\left[\log _{2}\|\Sigma\|\right]$ bits for each character	
$\begin{aligned} & \mathrm{A}= \\ & \mathrm{B}= \\ & \mathrm{C}= \\ & \mathrm{D}= \end{aligned}$	

31

## Fixed length code

Use $\left[\log _{2}|\Sigma|\right]$ bits for each character

		Symbol	Frequency
$A=00$	$2 \times 70+$	$A$	70
$B=01$	$2 \times 3+$		
$C=10$	$2 \times 20+$	$B$	3
$D=11$	$2 \times 37=$	$C$	20
	$D$	37	

260 bits
How many bits to encode the file?
A=00 2 < 70+
A=00 2 < 70+
B=01 2 < 3+
B=01 2 < 3+
C=10 2 < 20+
C=10 2 < 20+
D=11 2 < 37=
D=11 2 < 37=
260 bits
260 bits
Can we do better?
Can we do better?

33


35


34

## Decoding a file

$A=0$
$B=01$
$C=10$
$D=1$

What characters does this
sequence represent?

$$
\begin{aligned}
& A=0 \\
& B=100 \\
& C=101 \\
& D=11
\end{aligned}
$$

Symbol	Frequency
A	70
B	3
C	20
D	37

37


39


38


40

$$
\begin{aligned}
& A=0 \\
& B=100 \\
& C=101 \\
& D=11
\end{aligned}
$$



41
42
Traverse the graph until a leaf node is reached and output the symbol

## Decoding using a prefix tree


.


44


45


46


47

## Decoding using a prefix tree

Traverse the graph until a leaf node is reached and output the symbol

1000111010100
BAD CAB


48


49


51


52


53

## A greedy algorithm?

Given file frequencies, can we come up with a prefixfree encoding (i.e. build a prefix tree) that minimizes the number of bits?

```
Huffman(F)
 Q\leftarrowMakeHeap (F)
 for }i\leftarrow1\mathrm{ to }|Q|-
 allocate a new node z
 left [z]}\leftarrowx\leftarrow\mathrm{ ExtractMin}(Q
 right[z]}\leftarrowy\leftarrow\operatorname{ExtractMin}(Q
 f[z]}\leftarrowf[x]+f[y
 Insert(Q,z)
 return ExtractMin}(Q
```

55


54


56


57


59


58


60


61


63


62


64


65


67


Since $d_{1}<d_{2}$ then $-\mathrm{c} d_{1}+c d_{2}>0$ which shows that cost of the new tree is less than the cost of the original tree

66


68


69


71

