

1

Making change!
Input: a number k
Output: $\left\{n_{p,} n_{n}, n_{d}, n_{q}\right\}$, where $n_{p}+5 n_{n}+10 n_{d}+25 n_{q}=k$ and $n_{p}+n_{n}+n_{d}+n_{q}$ is minimized

Provide (U.S.) coins that sum up to k such
that we minimize the number of coins
that we minimize the number of coins

4

5

Making change!

Input: a number k
Output: $\left\{n_{p,} n_{n}, n_{d}, n_{q}\right\}$, where $n_{p}+5 n_{n}+10 n_{d}+25 n_{q}=k$ and $n_{p}+n_{n}+n_{d}+n_{q}$ is minimized
$n_{q}=\lfloor k / 25\rfloor \quad$ pick as many quarters as we can
Solve:
$n_{p}+5 n_{n}+10 n_{d}=\mathrm{k}-25[k / 25] \quad$ recurse

$$
n_{p}+5 n_{n}+10 n_{d}=\mathrm{k}-25\lfloor k / 25\rfloor \quad \text { recurse }
$$

6

| Algorithms vs heuristics |
| :--- | :--- |
| What is the difference between an algorithm and a
 heuristic? |
| Algorithm: a set of steps for arriving at the correct
 solution |
| Heuristic: a set of steps that will arrive at some
 solution |
| $n_{q}=\lfloor k / 25\rfloor \quad$ pick as many quarters as we can
 Solve:
 $n_{p}+5 n n+10 n d=\mathrm{k}-25\lfloor k / 25\rfloor \quad$ recurse |
| Algorithm or heuristic?
 Need to prove its correct! |

Greedy algorithms
What is a greedy algorithm?
Algorithm that makes a local decision with the goal of creating a
globally optimal solution
Method for solving problems where optimal solutions can be
defined in terms of optimal solutions to sub-problems
What does this mean? Where have we seen this before?

9

11

13

14

15

16

22

Greedy choice property

Proof by contradiction:
Let $\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{m}\right\}$ be an optimal solution
Assume it is ordered from largest to smallest
Assume that it does not make the greedy choice at some coin c_{i}
$c_{1}, c_{2}, c_{3}, \ldots, c_{i}, \ldots, c_{m}$
$g_{1} g_{2}, g_{3}, \ldots, g_{i}, \ldots, g_{n}$
$g_{1} g_{2}, g_{3}, \ldots, g_{i}, \ldots, g_{n}$
Any problem contradiction?
23

24

Greedy choice property

$g_{i}>c_{i}$
$g_{i}=5$
$c_{i}=1$
there are at least 4 other pennies
could always replace 5 pennies with a nickel to create shorter solution!

Greedy choice property
$g_{i}>c_{i}$
$g_{i}=10$
$c_{i}=5$
- there are at least 2 nickels (assuming we've dealt
with pennies first)
could always replace those coins with a dime to
create a shorter solution

26

Greedy choice property $\mathrm{g}_{\mathrm{i}}>\mathrm{c}_{\mathrm{i}}$ $\mathrm{g}_{\mathrm{i}}=25$ $r=$ remaining sum coins($r-25)$: number of coins to get remaining sum - 25 $\mathrm{c}_{\mathrm{i}}=10: 10+10+5+$ coins $(r-25)$ $\mathrm{c}_{\mathrm{i}}=5: 5+5+5+5+5+$ coins $(r-25)$ The greedy solution will always be better 27

32

Simple recursive solution

Enumerate all possible solutions and find which schedules the most activities

```
Interva_Lchemule-RbcursivE(A)
    l}\begin{array}{l}{1}\\{2}\\{2}
```



```
            c
\
    urn 1+max max =s
```

33

Simple recursive solution
Is it correct? - $\max \{a l l$ possible solutions $\}$

40

$\left.\begin{array}{|lll|}\hline \text { Stays ahead } \\ \text { We have at least as much time } \\ \text { as any other solution to schedule } \\ \text { the remaining } 2 \ldots \mathrm{k} \text { tasks }\end{array}\right]$

| Stays ahead |
| :--- | :--- | :--- |
| We have at least as much time
 as any other solution to schedule
 the remaining $2 \ldots \mathrm{k}$ tasks |
| What kind of proof is this? |

62
63

64

65

80

