
3/5/24

1

GREEDY ALGORITHMS
David Kauchak
CS 140 – Spring 2024

1

Admin

Assignment 6

ChatGPT

Collaboration

2

A problem

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

What is this problem?
How would you state it in English?

3

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

Provide (U.S.) coins that sum up to k such
that we minimize the number of coins

4

3/5/24

2

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

Algorithm to solve it?

5

Making change!

Input: a number k

Output: {np, nn, nd, nq}, where np+5nn+10nd+25nq=k
and np+nn+nd+nq is minimized

𝑛𝑞 = 𝑘	/	25 pick as many quarters as we can

Solve:
𝑛𝑝+ 5𝑛# + 10𝑛$ = k	 − 25 𝑘	/	25 recurse

6

Algorithms vs heuristics

What is the difference between an algorithm and a
heuristic?

Algorithm: a set of steps for arriving at the correct
solution

Heuristic: a set of steps that will arrive at some
solution

7

Making change!

Algorithm or heuristic?

Need to prove its correct!

𝑛𝑞 = 𝑘	/	25 pick as many quarters as we can

Solve:
𝑛𝑝+ 5𝑛𝑛 + 10𝑛𝑑 = k	 − 25 𝑘	/	25 recurse

8

3/5/24

3

Greedy algorithms

What is a greedy algorithm?

Algorithm that makes a local decision with the goal of creating a
globally optimal solution

Method for solving problems where optimal solutions can be
defined in terms of optimal solutions to sub-problems

What does this mean? Where have we seen this before?

9

Divide and conquer

Divide and conquer

To solve the general problem:

Break into sum number of sub problems, solve:

then possibly do a little work

10

Divide and conquer

Divide and conquer

To solve the general problem:

The solution to the general problem is solved with
respect to solutions to sub-problems!

11

Greedy vs. divide and conquer

Greedy

To solve the general problem:

Pick a locally optimal solution and repeat

12

3/5/24

4

Greedy vs. divide and conquer

Greedy

To solve the general problem:

The solution to the general problem is solved with respect to
solutions to sub-problems!

Slightly different than divide and conquer

13

Greedy vs. DP

…

greedy

dynamic
programming

Need to solve (recurse on) subproblems to figure out optimal answer

Only recurse
on one
subproblem

14

Proving correctness:
greedy choice property

The greedy choice results in an optimal solution

Greedy choice property: The greedy choice
is contained within some optimal solution

15

Making change!

{𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚} solution: individual coins selected

𝑛𝑞 = 𝑘	/	25 pick as many quarters as we can

Solve:
𝑛𝑝+ 5𝑛𝑛 + 10𝑛𝑑 = k	 − 25 𝑘	/	25 recurse

16

3/5/24

5

Proving greedy choice property

Option 1: proof by contradiction

• Assume you have an optimal solution to the problem
• Sometimes you have to think about it ordered/arranged a

particular way

• Assume that somewhere along the way the solution contains
a decision that is different than your greedy algorithm

• Argue this results in a contradiction, i.e., that the solution
you’re considering is not optimal

22

Greedy choice property

Proof by contradiction:

Let {𝑐1, 𝑐2, 𝑐3, … , 𝑐(} be an optimal solution

Assume it is ordered from largest to smallest

Assume that it does not make the greedy
choice at some coin 𝑐𝑖

Any problem contradiction?

𝑐1, 𝑐2, 𝑐3, … , 𝑐4, … , 𝑐5
𝑔6	𝑔2, 𝑔3, … , 𝑔4, … , 𝑔7

23

Greedy choice property

Proof by contradiction:

gi > ci. We need at least one more lower
denomination coin because gi can be made up of ci
and one or more of the other denominations

but that would mean that the solution is longer than
the greedy!

𝑐1, 𝑐2, 𝑐3, … , 𝑐4, … , 𝑐5
𝑔6	𝑔2, 𝑔3, … , 𝑔4, … , 𝑔7

24

Greedy choice property

gi > ci

gi = 5
ci = 1

• there are at least 4 other pennies
• could always replace 5 pennies with a nickel to

create shorter solution!

25

3/5/24

6

Greedy choice property

gi > ci

gi = 10
ci = 5

• there are at least 2 nickels (assuming we’ve dealt
with pennies first)

• could always replace those coins with a dime to
create a shorter solution

26

Greedy choice property

gi > ci

gi = 25

r = remaining sum
coins(r – 25): number of coins to get remaining sum - 25

ci = 10: 10 + 10 + 5 + coins(r-25)

ci = 5: 5 + 5 + 5 + 5 +5 + coins(r-25)

The greedy solution will always be better

27

Greedy choice property fails

Coins: 9, 4, 1

What’s the best way to make 12?

28

Greedy choice property fails

Coins: 9, 4, 1

gi > ci

gi = 9
r = remaining sum
coins(r – 9): number of coins to get remaining sum - 9

ci = 4: 4 + coins(r-4)

There is no way to guarantee that we would have to use the same
set of coins are coins(r-9)

29

3/5/24

7

Interval scheduling

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

30

Interval scheduling

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

Which activities conflict?

31

Interval scheduling

Which activities conflict?

Given n activities A = [a1,a2, .., an] where each activity
has start time si and a finish time fi. Schedule as many
as possible of these activities such that they don’t conflict.

32

Simple recursive solution

Enumerate all possible solutions and find which
schedules the most activities

33

3/5/24

8

Simple recursive solution

Is it correct?
l max{all possible solutions}

Running time?
l O(n!)

34

Can we do better?

Dynamic programming
¤ O(n2)

Greedy solution – Is there a way to repeatedly make local
decisions?

¤ Key: we’d still like to end up with the optimal solution

35

Overview of a greedy approach

Greedily pick an activity to schedule

Add that activity to the answer

Remove that activity and all conflicting activities. Call this A’.

Repeat on A’ until A’ is empty

36

Greedy options

37

3/5/24

9

Greedy options

Select the activity that starts the earliest, i.e.
argmin{s1, s2, s3, …, sn}?

38

Greedy options

non-optimal

Select the activity that starts the earliest, i.e.
argmin{s1, s2, s3, …, sn}?

39

Greedy options

Select the shortest activity, i.e.
argmin{f1-s1, f2-s2, f3-s3, …, fn-sn}

40

Greedy options

Select the shortest activity, i.e.
argmin{f1-s1, f2-s2, f3-s3, …, fn-sn}

non-optimal

41

3/5/24

10

Greedy options

Select the activity with the smallest number of conflicts

42

Greedy options

Select the activity with the smallest number of conflicts

43

Greedy options

Select the activity with the smallest number of conflicts

44

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

45

3/5/24

11

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

remove the conflicts

46

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

47

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

48

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

remove the conflicts

49

3/5/24

12

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

50

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

51

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

52

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

53

3/5/24

13

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

Multiple optimal
solutions

54

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

55

Greedy options

Select the activity that ends the earliest, i.e.
argmin{f1, f2, f3, …, fn}?

56

Efficient greedy algorithm

Once you’ve identified a reasonable greedy heuristic:
¤Prove that it always gives the correct answer
¤Develop an efficient solution

57

3/5/24

14

Is our greedy approach correct?

Option 1: proof by contradiction

Option 2:“Stays ahead” argument:

show that no matter what other solution someone provides
you, the solution provided by your algorithm always “stays
ahead”, in that no other choice could do better

58

Is our greedy approach correct?

“Stays ahead” argument

Let r1, r2, r3, …, rk be the solution found by our approach

Let o1, o2, o3, …, ok be another optimal solution

Show our approach “stays ahead” of any other solution

…
r1 r2 r3 rk

o1 o2 o3 ok
…

59

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

Compare first activities of each solution

what do we know?

60

Stays ahead

…
r1 r2 r3 rk

o1 o2 o3 ok
…

finish(r1) ≤ finish(o1)

what does this imply?

61

3/5/24

15

Stays ahead

…
r2 r3 rk

o2 o3 ok
…

We have at least as much time
as any other solution to schedule
the remaining 2…k tasks

62

Stays ahead

…
r2 r3 rk

o2 o3 ok
…

We have at least as much time
as any other solution to schedule
the remaining 2…k tasks

What kind of proof is this?

63

An efficient solution

64

Running time?

Θ(n log n)

Θ(n)

Overall: Θ(n log n)
Better than:

O(n!)
O(n2)

65

3/5/24

16

Scheduling all intervals

Given n activities, we need to schedule all activities.
Goal: minimize the number of resources required.

66

Greedy approach?

The best we could ever do is the maximum
number of conflicts for any time period

67

Calculating max conflicts efficiently

68

Calculating max conflicts efficiently

3

69

3/5/24

17

Calculating max conflicts efficiently

1

70

Calculating max conflicts efficiently

3

71

Calculating max conflicts efficiently

1

72

Calculating max conflicts efficiently

…

73

3/5/24

18

Calculating max conflicts

74

Correctness?

We can do no better then the max number of conflicts.
This exactly counts the max number of conflicts.

75

Runtime?

O(2n log 2n + n) = O(n log n)

76

Knapsack problems:
Greedy or not?

0-1 Knapsack – A thief robbing a store finds n items worth v1,
v2, .., vn dollars and weight w1, w2, …, wn pounds, where vi and
wi are integers. The thief can carry at most W pounds in the
knapsack. Which items should the thief take if he wants to
maximize value.

Fractional knapsack problem – Same as above, but the thief
happens to be at the bulk section of the store and can carry
fractional portions of the items. For example, the thief could
take 20% of item i for a weight of 0.2wi and a value of 0.2vi.

77

3/5/24

19

Handout

78

Here are some options for greedy algorithms. Do they work?
Can you come up with counterexamples?

• Starts earliest
• Least number of conflicts
• Shortest

79

Knapsack problems: Greedy or not?

0-1 Knapsack – A thief robbing a store finds n items worth v1, v2, .., vn dollars
and weight w1, w2, …, wn pounds, where vi and wi are integers. The thief can
carry at most W pounds in the knapsack. Which items should the thief take if
he wants to maximize value.

Fractional knapsack problem – Same as above, but the thief happens to be
at the bulk section of the store and can carry fractional portions of the items.
For example, the thief could take 20% of item i for a weight of 0.2wi and a
value of 0.2vi.

80

