
2/22/24

1

DYNAMIC PROGRAMMING:
EVEN MORE FUN!
David Kauchak
CS 140 – Spring 2023

1

Admin

Assignment 5

2

Overall how is the class going

3

How difficult is the class

4

2/22/24

2

Time spent

5

What’s going well?

The short clips at the start

working with partners!

I finally get to learn DP!

the versatility of the PS because I feel like I'm practicing
multiple different concepts

The topic is genuinely interesting and I love thinking of
algorithms, they remind be of puzzles.

6

What could be improved?

sometimes the pace of the lectures feel a bit fast

no group sessions

late days

The content feels way too theoretical

Less proofs, less inductions pls

Possible Saturday mentor sessions

7

What could be improved?

It also feels like a level of background is
expected from students, even though that
background has not been built through previous
Pomona CS classes so it feels very unfair to
those of us who weren't exposed to CS beyond
or before Pomona.

8

2/22/24

3

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

𝑅 𝑛 = max	
!:#$%&'(

𝑝𝑖 + 𝑅 𝑛 − 𝑙! 	

9

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2

Choice: 1 1

10

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6

3: 6 + R[0] = 6
1: 1 + R[2] = 3

Choice: 1 1 3

11

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7

3: 6 + R[1] = 7
1: 1 + R[3] = 7

Choice: 1 1 3 3

12

2/22/24

4

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9

5: 9 + R[0] = 9
3: 6 + R[2] = 8
1: 1 + R[4] = 8

Choice: 1 1 3 3 5

13

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13

6: 13 + R[0] = 13
5: 9 + R[1] = 10
3: 6 + R[3] = 12
1: 1 + R[5] = 10

Choice: 1 1 3 3 5 6

14

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14

6: 13 + R[1] = 14
5: 9 + R[2] = 11
3: 6 + R[4] = 13
1: 1 + R[6] = 14

Choice: 1 1 3 3 5 6 6

15

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16

8: 16 + R[0] = 16
6: 13 + R[2] = 15
5: 9 + R[3] = 15
3: 6 + R[5] = 15
1: 1 + R[7] = 15

Choice: 1 1 3 3 5 6 6 8

16

2/22/24

5

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19

8: 16 + R[1] = 17
6: 13 + R[3] = 19
5: 9 + R[4] = 16
3: 6 + R[6] = 19
1: 1 + R[8] = 17

Choice: 1 1 3 3 5 6 6 8 6

17

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20

8: 16 + R[2] = 18
6: 13 + R[4] = 20
5: 9 + R[5] = 18
3: 6 + R[7] = 20
1: 1 + R[9] = 20

Choice: 1 1 3 3 5 6 6 8 6 6

18

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22

8: 16 + R[3] = 22
6: 13 + R[5] = 22
5: 9 + R[6] = 22
3: 6 + R[8] = 22
1: 1 + R[10] = 21

Choice: 1 1 3 3 5 6 6 8 6 6 8

19

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

8: 16 + R[4] = 23
6: 13 + R[6] = 26
5: 9 + R[7] = 23
3: 6 + R[9] = 25
1: 1 + R[11] = 23

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

20

2/22/24

6

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

21

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

6 + R[6]

What cuts do we make?

22

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

6 +6 + R[0]

What cuts do we make?

23

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

24

2/22/24

7

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

8 + R[3]

What cuts do we make?

25

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

8 +

What cuts do we make?

3 + R[0]

26

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

27

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

6 + R[4]

28

2/22/24

8

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

6 +3 + R[1]

29

Rod splitting example

length: 1 3 5 6 8
price: 1 6 9 13 16

R 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 6 7 9 13 14 16 19 20 22 26

Choice: 1 1 3 3 5 6 6 8 6 6 8 6

What cuts do we make?

6 +3 +1 + R[0]

30

Longest increasing subsequence

Given a sequence of numbers X = x1, x2, …, xn find
the longest increasing subsequence
(i1, i2, …, im), i.e., a subsequence where numbers in the
sequence increase.

5 2 8 6 3 6 9 7

31

Longest increasing subsequence

5 2 8 6 3 6 9 7

Given a sequence of numbers X = x1, x2, …, xn find
the longest increasing subsequence
(i1, i2, …, im), i.e., a subsequence where numbers in the
sequence increase.

32

2/22/24

9

1b: recursive solution

5 2 8 6 3 6 9 7

Is 5 part off the LIS?

36

1b: recursive solution

5 2 8 6 3 6 9 7

Two options:
Either 5 is in the
LIS or it’s not

37

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

38

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

longest increasing
sequence of the
numbers starting with 8

39

2/22/24

10

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS(8 6 3 6 9 7)

What is this function exactly?

longest increasing
sequence of the
numbers

This would allow for the option of
sequences starting with 3 which
are NOT valid!

40

1b: recursive solution

5 2 8 6 3 6 9 7
include 5

5 + LIS’(8 6 3 6 9 7)

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 5?

41

1b: recursive solution

5 2 8 6 3 6 9 7

5 + LIS’(6 3 6 9 7)
5 + LIS’(6 9 7)
5 + LIS’(9 7)
5 + LIS’(7)

include 5

5 + LIS’(8 6 3 6 9 7)

42

1b: recursive solution

5 2 8 6 3 6 9 7
don’t
include 5

LIS(2 8 6 3 6 9 7)
Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS’?

43

2/22/24

11

1b: recursive solution

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

And what is LIS’ defined as (recursively)?

44

1b: recursive solution

)}('{max)(iLISXLIS
i

=

Longest increasing sequence for X
is the longest increasing sequence
starting at any element

Longest increasing sequence starting at i

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

45

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’:

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

46

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

47

2/22/24

12

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

48

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

49

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

50

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

51

2/22/24

13

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

52

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

53

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

54

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 4 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

55

2/22/24

14

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

56

2: DP solution (bottom-up)

5 2 8 6 3 6 9 7
LIS’: 3 4 2 2 3 2 1 1

)}('{max)(iLISXLIS
i

=

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

57

2: DP solution (bottom-up)

What does the table for storing
answers look like?

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

58

2: DP solution (bottom-up)

1-D array: only one thing changes
for recursive calls

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

59

2/22/24

15

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?

To calculate LIS’(n), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":	%&"'()(*	++,+&

𝐿𝐼𝑆′(𝑗)

60

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?
LIS’(n) and that is well-defined for this problem

To calculate LIS’(i), what are all the subproblems we need to calculate?
This is the “table”.
LIS’(1) … LIS’(n)

How should we fill in the table?
n à 1

Where will the answer be?
max(LIS’(1)…LIS’(n))

𝐿𝐼𝑆! 𝑖 = 	 1 + max
":%&"'()(*	+",+%

𝐿𝐼𝑆′(𝑗)

61

2: DP solution (bottom-up)

62

2: DP solution (bottom-up)

start from the end (bottom)

63

2/22/24

16

2: DP solution (bottom-up)

𝐿𝐼𝑆, 𝑖 = 	 1 + max
-:!.-/#	0#1	2-32!

𝐿𝐼𝑆′(𝑗)

64

2: DP solution (bottom-up)

)}('{max)(iLISXLIS
i

=

65

3: Analysis

Space requirements?

Running time?

66

3: Analysis

Space requirements: Θ(n)

Running time: Θ(n2)

67

2/22/24

17

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

68

Another solution

Can we use LCS to solve this problem?

5 2 8 6 3 6 9 7

2 3 5 6 6 7 8 9
LCS

69

Edit distance
(aka Levenshtein distance)

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

Insertion:

ABACED ABACCED DABACCED

Insert
‘C’

Insert
‘D’

70

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

71

2/22/24

18

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED

Delete
‘A’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

72

Edit distance
(aka Levenshtein distance)

Deletion:

ABACED BACED BACE

Delete
‘A’

Delete
‘D’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

73

Edit distance
(aka Levenshtein distance)

Substitution:

ABACED ABADED ABADES

Sub ‘D’ for ‘C’ Sub ‘S’ for ‘D’

Edit distance between two strings is the minimum number
of insertions, deletions and substitutions required to
transform string s1 into string s2

74

Edit distance examples

Edit(Kitten, Mitten) = 1

Operations:

Sub ‘M’ for ‘K’ Mitten

75

2/22/24

19

Edit distance examples

Edit(Happy, Hilly) = 3

Operations:

Sub ‘a’ for ‘i’ Hippy

Sub ‘l’ for ‘p’ Hilpy

Sub ‘l’ for ‘p’ Hilly

76

Edit distance examples

Edit(Banana, Car) = 5

Operations:

Delete ‘B’ anana

Delete ‘a’ nana

Delete ‘n’ naa

Sub ‘C’ for ‘n’ Caa

Sub ‘a’ for ‘r’ Car

77

Edit distance examples

Edit(Simple, Apple) = 3

Operations:

Delete ‘S’ imple

Sub ‘A’ for ‘i’ Ample

Sub ‘m’ for ‘p’ Apple

78

Edit distance

Why might this be useful?

79

2/22/24

20

Is edit distance symmetric?

that is, is Edit(s1, s2) = Edit(s2, s1)?

Why?
¤ sub ‘i’ for ‘j’ → sub ‘j’ for ‘i’
¤delete ‘i’ → insert ‘i’
¤ insert ‘i’ → delete ‘i’

Edit(Simple, Apple) =? Edit(Apple, Simple)

80

Calculating edit distance

X = A B C B D A B

Y = B D C A B A

Ideas? How can we break
this into subproblems?

81

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

After all of the operations, X needs
to equal Y

Start with the last two characters

82

Calculating edit distance

X = A B C B D A ?

Y = B D C A B ?

Operations: Insert

Delete

Substitute

Assume they’re different
How can we make them the same?

83

2/22/24

21

Insert

X = A B C B D A ?

Y = B D C A B ?

How can we use insert to transform X into Y?

84

Insert

X = A B C B D A ? ?

Y = B D C A B ?

insert the last character of Y to the end of X

85

Insert

X = A B C B D A ? ?

Y = B D C A B ?

How does this make the problem smaller?

86

Insert

X = A B C B D A ? ?

Y = B D C A B ?
Edit

),(1),(1...1...1 -+= mn YXEditYXEdit

87

2/22/24

22

Delete

X = A B C B D A ?

Y = B D C A B ?

How can we use delete to transform X into Y?

88

Delete

X = A B C B D A

Y = B D C A B ?

),(1),(...11...1 mn YXEditYXEdit -+=

Edit

89

Substition

X = A B C B D A ?

Y = B D C A B ?

How can we use substitution to transform X into Y?

90

Substition

X = A B C B D A ?

Y = B D C A B ?
Edit

),(1),(1...11...1 --+= mn YXEditYXEdit

91

2/22/24

23

Anything else?

X = A B C B D A ?

Y = B D C A B ?

92

Equal

X = A B C B D A ?

Y = B D C A B ?

What if the last characters are equal?

93

Equal

X = A B C B D A ?

Y = B D C A B ?
Edit

),(),(1...11...1 --= mn YXEditYXEdit

94

1b: recursive solution - combining results

),(),(1...11...1 --= mn YXEditYXEdit

),(1),(1...11...1 --+= mn YXEditYXEdit

),(1),(...11...1 mn YXEditYXEdit -+=

),(1),(1...1...1 -+= mn YXEditYXEditInsert:

Delete:

Substitute:

Equal:

𝑋𝑛 ≠ 𝑌𝑚

𝑋𝑛 = 𝑌𝑚

How do we decide between these?

95

2/22/24

24

1b: recursive solution - combining results

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

1: if they’re different
0: if they’re the same

96

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

What does the table for storing
answers look like?

97

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

𝐸𝑑𝑖𝑡(𝑋;…% , 𝑌;…")

d 𝑖, 𝑗 : edit distance between 𝑋;…% and 𝑌;…"

98

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?

To calculate 𝑑(𝑛,𝑚), what are all the subproblems we
need to calculate? This is the “table”.

How should we fill in the table?

Where will the answer be?

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

99

2/22/24

25

2: DP solution (bottom-up)

What are the “smallest” possible subproblems?
Edit(X, “”) = len(X) and Edit(“”, Y) = len(Y)

To calculate 𝑑(𝑛,𝑚), what are all the subproblems we need to calculate? This is
the “table”.
i < n and j < m

How should we fill in the table?
i = 1…, j = 1…

Where will the answer be?
d[n,m]

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

100

2: DP solution (bottom-up)

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

101

3: analysis

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Space requirements?

Running time?

102

3: analysis

ï
î

ï
í

ì

+
+
+

=

--

-

-

titutionequal/subs),(),(
deletion),(1
insertion)1

min),(

1...11...1

...11...1

1...11

mnmn

mn

m...n

YXEdityxDiff
YXEdit

,YEdit(X
YXEdit

Space requirements: Θ(nm)

Running time: Θ(nm)

103

2/22/24

26

Edit distance variants

l Only include insertions and deletions
l What does this do to substitutions?

l Include swaps, i.e. swapping two adjacent characters counts as
one edit

l Weight insertion, deletion and substitution differently

l Weight specific character insertion, deletion and substitutions
differently

l Length normalize the edit distance

104

DP in practice

105

106

https://leetcode.com/problems/house-robber/

108

2/22/24

27

https://leetcode.com/problems/interleaving-string/description/

109

Memoization?

110

