

5

What's going well?
The short clips at the start
working with partners!
I finally get to learn DP!
the versatility of the PS because I feel like I'm practicing multiple different concepts

The topic is genuinely interesting and I love thinking of algorithms, they remind be of puzzles.

What could be improved?
sometimes the pace of the lectures feel a bit fast
no group sessions
late days
The content feels way too theoretical
Less proofs, less inductions pls
Possible Saturday mentor sessions
7

What could be improved?

It also feels like a level of background is expected from students, even though that background has not been built through previous
Pomona CS classes so it feels very unfair to those of us who weren't exposed to CS beyond or before Pomona

Rod splitting example
length: 13568 price: 1691316 $R(n)=\max _{i: n-l_{i}: 0}\left\{p_{i}+R\left(n-l_{i}\right)\right\}$
$\begin{array}{llllllllllllll}\mathrm{R} & 0 & 1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

17

Rod splitting example

length: 13568 price: 1691316

$$
\begin{aligned}
& 5: 8+R D=20 \\
& 3: 1+R[9]=20
\end{aligned}
$$

$\begin{array}{llllllllllllll}R & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
Choice: $\begin{array}{llllllllll}1 & 1 & 3 & 3 & 5 & 6 & 6 & 8 & 6 & 6\end{array}$

18

19

Rod splitting example
length: 13568
price: $\begin{array}{llllll}1 & 6 & 9 & 13 & 16\end{array}$
8: $16+\mathrm{R}[4]=23$
$8: 16+\mathrm{R}[4=23$
$6: 13+\mathrm{R}[6]=26$
$5: 9+\mathrm{R} 7 \mathrm{l}=23$
$5: 9+\mathrm{R}[7]=23$
$3: 6+\mathrm{R}[9]=25$
$3: 8+\mathrm{R}(9)=25$
$1: 1+\mathrm{R}[1]=23$
$\begin{array}{llllllllll}0 & 1 & 2 & 6 & 7 & 9 & 13 & 141619 & 20 & 22\end{array} 26$
$\begin{array}{lllllllllllllll}\mathrm{R} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ Choice: $\begin{array}{lllllllllllll}1 & 1 & 3 & 3 & 5 & 6 & 6 & 8 & 6 & 6 & 8 & 6\end{array}$

20

Rod splitting example
length: 1356
price: 1691316

> What cuts do we make?
$\begin{array}{llllllllll}0 & 1 & 2 & 6 & 131416192022 & 26\end{array}$
$\begin{array}{llllllllllllll}\mathrm{R} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

22

23

Rod splitting example
length: 13568
price: $\begin{array}{llllll}1 & 6 & 9 & 13 & 16\end{array}$

What cuts do we make?

$\begin{array}{lllllllllll}0 & 1 & 2 & 6 & 7 & 9 & 13141619 & 20 & 22 & 26\end{array}$
$\begin{array}{lllllllllllll}R & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$ Choice: $\begin{array}{lllllllllllll}1 & 1 & 3 & 3 & 5 & 6 & 6 & 8 & 6 & 6 & 8 & 6\end{array}$

25

Rod splitting example
length: 1356
price: 1691316
What cuts do we make?
$\begin{array}{llllllllll}0 & 1 & 2 & 6 & 7 & 131416192022 & 26\end{array}$
$\begin{array}{llllllllllllll}R & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

26

27

Rod splitting example
length: 13568
price: $\begin{array}{llllll}1 & 6 & 9 & 13 & 16\end{array}$
What cuts do we make?
$\begin{array}{llllllllll}0 & 1 & 2 & 6 & 7 & 9 & 13 & 141619 & 20 & 22\end{array} 26$
$\begin{array}{llllllllllllll}R & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
 r
$6+\mathrm{R}[4]$

28

Rod splitting example					
length: 13568 price: 1691316					
What cuts do we make?					
$\begin{array}{llllllllllllll}0 & 1 & 2 & 6 & 7 & 9 & 13141619 & 20 & 22 & 26\end{array}$					
$\begin{array}{\|cccccccccccccc} \mathrm{R} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { Choice: } & 1 & 1 & 3 & 3 & 5 & 6 & 6 & 8 & 6 & 6 & 8 & 6 \end{array}$					

29

Rod splitting example
length: 13556
price: 1691316
What cuts do we make?
$\begin{array}{llllllllll}0 & 1 & 2 & 6 & 7 & 131416192022 & 26\end{array}$
$\begin{array}{llllllllllllll}\mathrm{R} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

30

31

Longest increasing subsequence

Given a sequence of numbers $X=x_{1}, x_{2}, \ldots, x_{n}$ find
the longest increasing subsequence
($i_{1}, i_{2}, \ldots, i_{m}$), i.e., a subsequence where numbers in the sequence increase.

52863697

39

40

1 b : recursive solution	
include 5	$\begin{aligned} & 528636997 \\ & 5+\underbrace{\text { LIS' }^{\prime}(8} 633697) \end{aligned}$ longest increasing sequence of the numbers starting with 8 Do we need to consider anything else for subsequences starting at 5 ?

41

1 b : recursive solution

42

1 b : recursive solution
52863697
don't
LIS(2 8636697$)$
Anything else?
Technically, this is fine, but now we have LIS and LIS' to worry about.

Can we rewrite LIS in terms of LIS'?

1 b: recursive solution
$\operatorname{LIS}(X)=\max _{i}\left\{L I S^{\prime}(i)\right\}$
Longest increasing sequence for X is the longest increasing sequence is the longest increasing
starting at any element
$L I S^{\prime}(i)=1+\max _{j: i<j \leq n \text { and } x_{j}>x_{i}} L I S^{\prime}(j)$
Longest increasing sequence starting at i

45

46

47

58
2: DP solution (bottom-up)
LIS' $(i)=1+\max _{j: i<j \leq n \text { and } x_{j}>x_{i}}$ LIS' $^{\prime}(j)$
What are the "smallest" possible subproblems?
To calculate LIS'(n), what are all the subproblems we
need to calculate? This is the "table".
How should we fill in the table?
Where will the answer be?

60

2: DP solution (bottom-up)
$L I S^{\prime}(i)=1+\max _{j: i<j \leq \text { nand } x j>x i} L I S^{\prime}(j)$
What are the "smallest" possible subproblems?
LIS'(n) and that is well-defined for this problem
To calculate LIS'(i), what are all the subproblems we need to calculate? This is the "table". $L_{S}^{\prime}(1) \ldots L^{\prime}(n)$
How should we fill in the table? $n \rightarrow 1$
Where will the answer be? $\max \left(L S^{\prime}(1) . . . L S^{\prime}(n)\right)$

61

62

63

64

66

68

70

Edit distance (aka Levenshtein distance)

Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}

Deletion
ABACED

71

Edit distance (aka Levenshtein distance)
Edit distance between two strings is the minimum number of insertions, deletions and substitutions required to transform string s_{1} into string s_{2}
Aeletion:
ABACED \square BACED
Delete

72

74

75

80

82

83
Insert
X=ABCBDA?
$Y=$ BDCAB?
How can we use insert to transform X into Y?
84
Insert
$X=A B C B D A ? ?$
$Y=B D C A B ?$
insert the last character of Y to the end of X
85
Insert
X=ABCBDA??
Y = B DCAB?
How does this make the problem smaller?
86

Insert
$X=A B C B D A ? ?$
Edit
$Y=B D C A B ?$
$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 \ldots n}, Y_{1 . \ldots m-1}\right)$

Delete
$\mathrm{X}=\underset{\text { Edit }}{\underset{\text { A B C B D }}{ }}$
$\mathrm{Y}=\underset{\mathrm{B} \mathrm{D} \mathrm{C} \mathrm{A} \mathrm{B} \mathrm{?}}{ }$
$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 . . m m}\right)$
89

Substition
$X=A B C B D A ?$
$Y=B D C A B ?$
How can we use substitution to transform X into Y ?

Substition
$\mathrm{X}=\underset{\text { Edit }}{\mathrm{ABCBDA} ?}$
$\mathrm{Y}=\mathrm{BDCAB} ?$
$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 . . . m-1}\right)$
91
Anything else?
$X=A B C B D A ?$
$Y=B D C A B ?$
Equal
$X=A B C B D A ?$
$Y=B D C A B ?$
What if the last characters are equal?
93

Equal
$\mathrm{X}=\underset{\text { Edit }}{\mathrm{ABCBDA} ?}$
$\mathrm{Y}=\mathrm{B} \mathrm{D} \mathrm{C} \mathrm{A} \mathrm{B} ?$
$E \operatorname{dit}(X, Y)=\operatorname{Edit}\left(X_{1 . \ldots n-1}, Y_{1 . \ldots m-1}\right)$

1 b : recursive solution - combining results	
Insert:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . . n}, Y_{1 . . . m-1}\right)$
Delete:	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . . n-1}, Y_{1 . . . m}\right)$
$X_{n} \neq Y m$	$\operatorname{Edit}(X, Y)=1+\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 \ldots m-1}\right)$
$\begin{aligned} & X_{n}=Y_{m} \\ & \text { Equal: } \end{aligned}$	$\operatorname{Edit}(X, Y)=\operatorname{Edit}\left(X_{1 . . n-1}, Y_{1 . \ldots m-1}\right)$
How do we decide between these?	

2: DP solution (bottom-up)	
$\operatorname{Edit}(X, Y)=\min \left\{\begin{array}{cc} 1+E \operatorname{dit}\left(X_{1 . \ldots}, Y_{1, \ldots-1}\right) & \text { insertion } \\ 1+E \operatorname{dit}\left(X_{1, \ldots-1}, Y_{1 . m}\right) & \text { deletion } \\ \operatorname{Diff}\left(x_{n}, y_{m}\right)+E \operatorname{Edit}\left(X_{1 . \ldots-1}, Y_{1 . \ldots-1}\right) & \text { equal/substitution } \end{array}\right.$ What are the "smallest" possible subproblems? $\operatorname{Edit}(X, " ")=\operatorname{len}(X)$ and $\operatorname{Edit}\left("{ }^{\prime \prime}, Y\right)=\operatorname{len}(Y)$ To calculate $d(n, m)$, what are all the subproblems we need to calculate? This is the "table". $\mathrm{i}<\mathrm{n}$ and $\mathrm{i}<\mathrm{m}$ How should we fill in the table? $i=1 \ldots, j=1 \ldots$ Where will the answer be? $\mathrm{d}[\mathrm{n}, \mathrm{m}]$	

100

102

103

Edit distance variants
- Only include insertions and deletions
- What does this do to substitutions?
- Include swaps, i.e. swapping two adiacent characters counts as
one edit
- Weight insertion, deletion and substitution differently
- Weight specific character insertion, deletion and substitutions
differently
- Length normalize the edit distance

For each aligned paragraph pair (i.e. a simple paragraph and one or more normal paragraphs), we then used a dynamic programming approach to find that best global sentence alignment following Barzi- lay and Elhadad (2003). Specifically, given n normal sentences to align to m simple sentences, we find $a(n, m)$ using the following recurrence:

106
108

```
*)
*)
```

