

1

Midterm 1

2 pages of notes

Up through 2/13 (no dynamic programming)

Made a previous midterm available (note, it was challenging)

Admin

Assignment 5

Group 4 assignment distribution

Midterm next Thursday (2/29)

Assignment 6
\square Released early next week
\square Due Friday before spring break

2

Midterm 1 topics

Math foundations

\square log properties
\square properties of exponentials

Proofs by induction (weak, strong, and structural)

Big-O (theta and omega)
\square Proving and disproving
\square Categories and function ordering

4

Midterm 1 topics
Recurrences
Generating (i.e., given a function/algorithm, write the recurrence)
Solving: recurrence tree, substitution, master method
Insertion sort, Selection sort, Mergesort, Quicksort
Ountimes, properties (in-place, stable)
Order statistics
run-time

5

Tree counting code

Tree counting code

7

Midterm 1 topics

Data structures

\square BSTs, red black trees, binary heaps, binomial heaps
\square Run-times and functionality basics

Amortized analysis
Aggregate and accounting methods

Richard Bellman On the Birth of Dynamic Programming
Stuart Dreyfus
http://www.eng.tau.ac.il/~ami/cd/o r50/1526-5463-2002-50-01
0048.pdf

Where did "dynamic programming" "I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. "An interesting question is, 'Where did the name, dynamic programming, come from?' The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word, research. I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would tum red, and he would get violent if people used the term, research, in his presence. You can imagine how he felt, then, about the term, mathematical. The RAND Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word, 'programming.' I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying-I thought, let's kill two birds with one stone. Let's take a word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activi-	from? Richard Bellman On the Birth of Dynamic Programming Stuart Dreyfus http://www.eng.tau.ac.il/~ami/cd/o r50/1526-5463-2002-50-01- 0048.pdf

8

Dynamic programming

Method for solving problems where optimal solutions can be defined in terms of optimal solutions to subproblems

AND
the subproblems are overlapping

9

LCS problem

Given two sequences X and Y, a common subsequence is a subsequence that occurs in both X and Y

Given two sequences $X=x_{1}, x_{2}, \ldots, x_{n}$ and
$Y=y_{1}, y_{2}, \ldots, y_{n}$

What is the longest common subsequence?

Dynamic programming: steps

1a) optimal substructure: optimal solutions to the problem incorporate optimal solutions to related subproblems \square convince yourself that there is optimal substructure

1b) recursive definition: use this to recursively define the value of an optimal solution
2) DP solution: describe the dynamic programming table: \square size, initial values, order in which it's filled in, location of solution
3) Analysis: analyze space requirements, running time

10
1b: recursive solution
$\mathrm{X}=\mathrm{A}$ B C B D A B
Y = B D C A B A
Assume you have a solver for smaller problems

12

13

1 b : recursive solution
$X=A B C B D A ?$
$Y=B D C A B ?$

Two cases: either the characters are the same or they're different

14

1 b : recursive solution

$$
\begin{aligned}
& X=\frac{\text { ABCBDAB }}{\text { Lcs }} \\
& Y=B \text { B C ABA }
\end{aligned}
$$

If they're different

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right)
$$

17

$$
Y=B D C A B A
$$

19
1 b : recursive solution

$$
X=A B C B D A B
$$

$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc}1+\operatorname{LCS}\left(X_{1 \ldots n-1}, Y_{1 \ldots m-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(\operatorname{LCS}\left(X_{1 \ldots n-1}, Y\right), \operatorname{LCS}\left(X, Y_{1 \ldots m-1}\right)\right. & \text { otherwise }\end{array}\right.$ (for now, let's just worry about counting the length of the LCS)

1 b : recursive solution
$X=A B C B D A B$
$Y=B D C A B A$
$X=A B C B D A B$
$Y=B D C A B A$

If they're different

18

$1 \mathrm{~b}:$ recursive solution	
X	$=$ ABCBDAB
Y	$=$ B D CABA
X	$=$ ABCBDAB
Y	$=$ B D CABA
If they're different	

20

2: DP solution
$\operatorname{LCS}(X, Y)=\left\{\begin{array}{cc} 1+\operatorname{LCS}\left(X_{1 . . n-1}, Y_{1 . . .-1}\right) & \text { if } x_{n}=y_{m} \\ \max \left(L C S\left(X_{1 . . . n-1}, Y\right), L C S\left(X, Y_{1 . . . m-1}\right)\right. & \text { otherwise } \end{array}\right.$ What types of subproblem solutions do we need to store? $\operatorname{LCS}\left(\mathrm{X}_{1 \ldots \mathrm{j}}, \mathrm{Y}_{1 \ldots \mathrm{k}}\right)$ $L C S[i, j]=\left\{\begin{array}{cc} 1+\operatorname{LCS}[i-1, j-1] & i f x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise } \end{array}\right.$

21

23

$$
L C S[i, j]=\left\{\begin{array}{cc}
1+L C S[i-1, j-1] & i f x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

$\left.\begin{array}{ll|llllllll} & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & & y_{j} & B & D & C & A & B & A\end{array}\right]$

22
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & i \text { f } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$
$\left.\begin{array}{ll|lllllll} & & j & 0 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

24

25

$$
L C S[i, j]=\left\{\begin{array}{cl}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

$\left.\begin{array}{ll|lllllllll} & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & & y_{j} & B & D & C & A & B & A\end{array}\right]$

$L C S[i, j]=\{$	$\frac{1+L C S[i-1, j-1]}{\max (L C S[i-1, j], L C S[i, j-1]}$	if $x_{i}=y_{j}$ otherwise
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & \text { B D C A B A } \end{array}$	
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	0 ?	LCS(A, B)
2 B	0	
3 C	0	
4 B	0	
5 D	0	
6 A	0	
7 B	0	

26

28

29
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

i^{j}	$\begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_{j} & B & D & C & A & B A \end{array}$
$0 \mathrm{x}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	011223
5 D	0
6 A	0
7 B	0

31

30

32

33

34

The algorithm

$$
\begin{aligned}
& \text { LCS-Length }(X, Y) \\
& 1 \quad m \leftarrow \text { length }[X] \\
& 2 \quad n \leftarrow \text { length }[Y] \\
& c[0,0] \leftarrow 0 \\
& \text { for } i \leftarrow 1 \text { to } m \\
& c[i, 0] \leftarrow 0 \\
& \text { for } j \leftarrow 1 \text { to } n \\
& c[0, j] \leftarrow 0 \\
& \text { for } i \leftarrow 1 \text { to } m \\
& \begin{aligned}
\text { for } j & \leftarrow 1 \text { to } n \\
& \text { if } x_{i}=y_{i}
\end{aligned} \\
& c[i, j] \leftarrow 1+c[i-1, j-1] \\
& i-1, j]>c[i, j-1] \\
& c[i, j] \leftarrow c[i-1, j] \\
& \text { else } \\
& c[i, j] \leftarrow c[i, j-1 \\
& \text { return } c[m, n]
\end{aligned}
$$

The algorithm

36

37

39

The algorithm

40

Keeping track of the solution
Our LCS algorithm only calculated the length of the LCS
between X and Y
What if we wanted to know the actual sequence?

41

$$
L C S[i, j]=\left\{\begin{array}{cl}
1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\
\max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }
\end{array}\right.
$$

i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 4 & 5 \\ y_{j} & B & D & C A B A \end{array}$
$0 \mathrm{xi}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122
3 C	0112222
4 B	011223
5 D	0
6 A	0
7 B	0

43

$L C S[i, j]=$	$\begin{array}{cc} 1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \hline \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise } \end{array}$
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \end{array}$
$0 \mathrm{x}_{\mathrm{i}}$	0000000
1 A	0000111
2 B	0111122 LCS(ABCB, BDCAB)
3 C	0112222
4 B	$01122 ?$
5 D	0
6 A	0
7 B	0

42

44

45

47
$L C S[i, j]=\left\{\begin{array}{cc}1+L C S[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (L C S[i-1, j], L C S[i, j-1] & \text { otherwise }\end{array}\right.$

$i^{\text {j }}$	$\begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_{j} & B & D & C & A & B & A \end{array}$	
0 xi	0000000	
1 A	0000011	
2 B	$0 \times 1 \sim 112{ }_{4}$	We can follow the
3 C	0112222	arrows to generate
4 B	0112233	the solution
5 D	012223.3	
6 A	0122334	BCBA
7 B	0122344	BCBA

$L C S[i, j]=$	$\left[\begin{array}{c} 1+L C S[i-1, j-1] \\ \max (L C S[i-1, j], L C S[i, j-1] \end{array}\right.$	$\begin{aligned} & \text { if } x_{i}=y_{j} \\ & \text { otherwise } \end{aligned}$
i^{j}	$\begin{array}{llllll} 0 & 1 & 2 & 3 & 4 & 5 \\ y_{j} & B & D & C A B A \end{array}$	How do we generate the solution from this?
$0 \mathrm{x}_{\mathrm{i}}$	0000000	
1 A	$\begin{array}{llllll}0 & 0 & 0 & 0 & 1\end{array}$	
2 B	$01+112$	
3 C	0.1122 .22	
4 B	01.12233	
5 D	012223,3	
6 A	0122334	
7 B	0122344	

46

Rod splitting

Input: a length n and a table of prices for $i=1,2, \ldots m$ Output: maximum revenue obtainable by cutting up the rod and selling the pieces

Example:

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 3 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 28
\end{array}
$$

49

1 a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 3 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 28
\end{array}
$$

What would a solution look like?

50

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{array}{lrrrrrrrrrrr}
\text { length } & i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 3 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 28
\end{array}
$$

$$
\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=1}^{m} l_{i} \leq n
$$

What would a subproblem solution look like?

1 a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

$$
\begin{aligned}
& \text { length } \begin{array}{rrrrrrrrrrr}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { price } & p_{i} & 1 & 3 & 8 & 9 & 10 & 17 & 17 & 20 & 24 \\
28
\end{array} \\
& \qquad\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=1}^{m} l_{i} \leq n \\
& \left\{l_{2}, l_{3}, \ldots, l_{m}\right\} \text { where } \sum_{i=2}^{m} l_{i} \leq n-l_{1}
\end{aligned}
$$

55

1a: optimal substructure

Prove: optimal solutions to the problem incorporate optimal solutions to related subproblems

Proof by contradiction:

Assume: $\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\}$ is a solution to n, but $\left\{l_{2}, l_{3}, \ldots, l_{m}\right\}$ is not a solution to $n-l_{1}$

If that were the case, then some solution to $n-l_{1}$ exists where the the sum of the prices of the lengths is greater than that for $\left\{l_{2}, l_{3}, \ldots, l_{m}\right\}$.

We could add l_{1} to this subproblem solution and get a better solution to the n problem... contradiction

54

56

57

59

60

61

64

65

67

66

68

69
2: DP solution (from the bottom-up)

$$
R(n)=\max _{i: n-l_{i} \geq 0}\left\{p_{i}+R\left(n-l_{i}\right)\right\}
$$

Where will the answer be?
$R(n)$

71
2: DP solution (from the bottom-up)

$$
R(n)=\max _{l: n-l_{i}}\left\{p_{i}+R\left(n-l_{i}\right)\right\}
$$

How should we fill in the table?
$\mathrm{R}(0) \rightarrow \mathrm{R}(\mathrm{n})$
The dependencies are on smaller values

70

72

73

75

74

Memoization

Sometimes it can be a challenge to write the function in a bottomup fashion

Memoization:

- Write the recursive function top-down
\square Alter the function to check if we've already calculated the value
- If so, use the pre-calculate value
- If not, do the recursive call(s)

Memoized fibonacci
Fibonacci (n)
1
if $n=1$
2
or $n=2$
3
else
4
4
return 1
return F
4 return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-Memoized (n)
$1 \quad \mathrm{fib}[1] \leftarrow 1$
2 fib[2] $\leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad$ fib $[i] \leftarrow \infty$
5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return fib[n]
$3 x \leftarrow \operatorname{Fib-Lookup}(n-1)+\operatorname{Fib-LOoкUP}(n-2)$
4 if $x<f i b[n]$
fib $[n] \leftarrow x$
6 return fib[n]
82

84

83

85

```
Memoized fibonacci
    Fibonacci( \(n\) )
    1 if \(n=1\) or \(n=2\)
    2 return 1
    3
4 else
                            return \(\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)\)
Fibonacci-Memoized \((n)\)
    \(1 \quad f i b[1] \leftarrow 1\)
    2 fib \([2] \leftarrow 1\)
    3 for \(i \leftarrow 3\) to \(n\)
    4 for \(i \leftarrow 3\) fo \(n\)
    5 return Fib-Lookup ( \(n\) )
    Fib-Lookup(n)
    1 if \(f i b[n]<\infty\)
```



```
    4 if \(x<f i b[n]\)
    \(5 \quad f i b[n] \leftarrow x\)
    6 return fib[n]
```

86

Memoized fibonacci
Fibonacci(n)
1 if $n=1$ or $n=2$
2 else return 1
3
4 else
return $\operatorname{Fibonacci}(n-1)+\operatorname{Fibonacci}(n-2)$

Fibonacci-MEmoized (n)
$1 \quad$ fib $[1] \leftarrow 1$
$2 \mathrm{fib}[2] \leftarrow 1$
3 for $i \leftarrow 3$ to n
$4 \quad$ fib $[i] \leftarrow \infty$
5 return Fib-Lookup (n)
Fib-Lookup(n)
1 if $f i b[n]<\infty$
2 return fib $[n$
$3 x \leftarrow \operatorname{Fib-Lookup}(n-1)+\operatorname{Fib}-\operatorname{Lookup}(n-2)$
4 if $x<f i b[n] \quad$ store the value
6. return $f \imath b \mid n]$

87

