

1

2

3

Algorithms
"For me, great algorithms are the poetry of
computation. Just like verse, they can be terse, allusive, dense and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing." - Francis Sullivan

What is an algorithm?

4

Example algorithms
sort a list of numbers find a route from one place to another (cars, packet routing, phone routing, ...) find the longest common substring between two strings add two numbers microchip wiring/design (VLSI) solve sudoku cryptography compression (file, audio, video) spell checking pagerank classify a web page

\log properties
$\log _{a} x \quad x=a^{b}$
a raised to what exponent is $x^{2} ?$

Log properties		
$\begin{aligned} & \log _{a} a=? \quad a \text { raised to what exponent is } x \text { ? } \\ & \log _{a} x=\text { ? if } x>a \end{aligned}$		
$\log _{a} x=$? if $x<a$		
greater than 1 less than 1 exactly 1		

Log properties
Which is bigger?
2) $\log _{4} 2=\mathrm{x} \rightarrow 2=4^{\mathrm{x}}$
$\log _{3} 2=\mathrm{x} \rightarrow 2=3^{x}$
2

Log properties $\log (a b)=\log a+\log b$ Which is bigger? 1) $\log _{3} 27$ 2) $\log _{4} 36$ 14

Log properties
$\log (a b)=\log a+\log b$
Which is bigger?
1) $\log _{3} 27=\log _{3} 3+\log _{3} 3+\log _{3} 3$
2) $\log _{4} 36=\log _{4} 4+\log _{4} 3+\log _{4} 3$

Log properties
$\log (a b)=\log a+\log b$
Which is bigger?
1) $\log _{3} 27=\log _{3} 3+\log _{3} 3+\log _{3} 3$
2) $\log _{4} 36=\log _{4} 4+\log _{4} 3+\log _{4} 3$
16

| Log properties |
| :--- | :--- |
| $\log (a / b)=\log a-\log b$ |
| Which is bigger? |
| 1) $\log _{3} 4.5$ |
| 2) $\log _{4} 8$ |$|$| Log properties |
| :--- |
| $\log (a / b)=\log a-\log b$ |
| Which is bigger? |
| 1) $\log _{3} 4.5=\log _{3} 9-\log _{3} 2$ |
| 2) $\log _{4} 8=\log _{4} 16-\log _{4} 2$ |

19

Log properties
$\log b^{x}=x \log b$
$\log b^{x}=\log b+\log b+\ldots+\log b$
$\log \mathrm{b}^{\mathrm{x}}=\sum_{i=1}^{x} \log b$

20

Log properties
$\log _{\mathrm{a}} \mathrm{b}=\frac{\log b}{\log a} \quad$ allows you to change bases!
1

Log properties $\log _{\mathrm{a}} \mathrm{a}=?$ $\log _{\mathrm{a}} \mathrm{b}=\frac{\log b}{\log a}$ $\log _{\mathrm{a}} \mathrm{x}=?$ if $\mathrm{x}>\mathrm{a}$ $\log _{\mathrm{a}} \mathrm{x}=?$ if $\mathrm{x}<\mathrm{a}$ $\log _{\mathrm{a}} \mathrm{x}=\frac{\log x}{\log a}$ greater than 1 less than 1
22

Log properties	
$\log _{\mathrm{a}} \mathrm{a}=$?	$\log _{\mathrm{a}} \mathrm{b}=\frac{\log b}{\log a}$
$\log _{\mathrm{a}} \mathrm{x}>1$	if $\mathrm{x}>\mathrm{a}$
$\log _{\mathrm{a}} \mathrm{x}<1$ if $\mathrm{x}<\mathrm{a}$	$\log _{\mathrm{a}} \mathrm{x}=\frac{\log x}{\log a}$
greater than 1	less than 1

Log properties
Which is bigger?
1) $\log _{3} 2$
${ }^{21} \log _{4} 2$
24

Pseudocode
A way to discuss how an algorithm works that is
language agnostic and without being encumbered
with actual implementation details.
Should give enough detail for a person to undersand,
analyze and implement the algorithm.

Pseudocode examples
```\(\operatorname{Mystery} 1(A)\) \(x \leftarrow-\infty\) for \(i \leftarrow 1\) to length \([A]\) if \(A[i]>x\) \(x \leftarrow A[i]\) return \(x\) Mystery2(A) for \(i \leftarrow 1\) to \(\lfloor\) length \((A) / 2\rfloor\) swap \(A[i]\) and \(A[\) length \((A)-(i-1)]\)```
42


Pseudocode convections	Proofs
array indices start at 1 not 0   we may use notation such as $\infty$, which, when translated to code, would be something like Integer.MAX VALUE   use shortcuts for simple function (e.g. swap) to make pseudocode simpler   we'll often use $\leftarrow$ instead of $=$ to avoid ambiguity   indentation specifies scope	What is a proof?   A deductive argument showing a statement is true based on previous knowledge (axioms)   Why are they important/useful?   Allows us to be sure that something is true In algs: allow us to prove properties of algorithms

## 43



