CS140 - Midterm 1: Sample

1. [7.5 points] T/F - State whether the statements below are true or false AND give a brief justification for your answer.
\qquad $2^{c \sqrt{n}}=O\left(2^{\sqrt{n}}\right)$ for any constant $c>0$
$f(n)+g(n)=O(\max (f(n), g(n))$ assuming $f(n)$ and $g(n)$ are positive functions.
_ You are given two algorithms A_{1} and A_{2} for solving a problem. A_{1} runs in time $O\left(n^{3}\right)$ and A_{2} runs in time $O(\log n)$. It is possible for A_{1} to take less time to run than A_{2} on all possible inputs.
__ A k-sorted array is an array where any value is no more than k positions from it's correct location. The worst case running time of Insertion-Sort on a k-sorted array is $O\left(n^{2}\right)$.

If f is $O(g)$, then 2^{f} is $O\left(2^{g}\right)$
2. [6 points] You're given an array of n elements and would like to print the k largest in sorted, decreasing order. For example, if $n=8$ and $k=3$ and the input were:

8102146215

Then the output would be: 15108
For each of the methods below, describe the most efficient, worst-case run-time for the method described. Note your run-times should be in terms of n and k.
(a) Sort all n numbers and then print the largest k.
(b) Find the largest value. Remove it from the array and print it. Repeat until you've found the k largest values.
(c) Find the k th largest number, partition around it, then sort the k largest numbers.
3. [6 points] Suppose you are given an array $A[1 \ldots n]$ of sorted integers that has been rotated k positions to the right. For example, $[35,42,5,15,27,29]$ is a sorted array that has been circularly rotated $k=2$ positions, while [27,29, $35,42,5,15$] has been rotated $k=4$ positions. Describe an algorithm to find the largest value in a k-shifted array in $O(\log n)$ time.
4. [6 points] If possible, solve the following recurrences and prove that your answer is correct (using the master method is fine as proof):
(a) $T(n)=3 T\left(\frac{n}{3}\right)+\log n$
(b) $T(n)=T(n-1)+n^{d} \log n$, for $d \geq 1$

