
CS140 - Assignment 9
Due: Sunday, April 7th at 11:59pm

https://xkcd.com/1569/

Note: If not specified in the problem, you may assume whatever graph representation makes your
algorithm more efficient (adjacency list or adjacency matrix). State which one you are using.

1. [10 points] Induction on Trees

Use induction to prove that the number of degree-2 nodes in a non-empty binary tree is 1
less than the number of leaves. Recall that the degree of a vertex in a tree is the number of
children that it has.

2. [5 points] Someone suggests to you the following algorithm for finding the shortest path
from node s to node t in a directed graph with some negative edges: add a large constant
to each edge weight so that all the weights become positive, then run Dijkstra’s algorithm
starting at node s, and return the shorted path found to node t.

Is this a valid method? Argue that it works correctly or give a counterexample.

3. [10 points] Can we do better than Bellman-Ford?

Assume that you are given a graph and a source vertex. You are told that the graph has the
following property: for every vertex v, the weights of the edges along the shortest path from s
to v are strictly increasing. Describe an efficient algorithm to solve the single source shortest
path problem for such a graph. Explain why your algorithm is correct and give the runtime.

You may assume that there are no negative weight cycles, though there may be negative edge
weights.

1



4. [10 points] Suggesting interesting routes

Let G be an undirected graph with n vertices (representing major attractions) and weighted
edges (representing roads and their lengths). The boringness of a path between vertices u
and v in G is defined to be the maximum weight among all edges on that path. The cob
(coefficient of boringness) of a pair (u, v) is the minimum boringness over all paths from u to
v.

The weights (lengths of the roads between the vertices) are specified by a symmetric n × n
adjacency matrix where the element in row i and column j specifies the weight of the edge
between vertices i and j and is ∞ if no such edge exists.

(a) Describe a modification to the Floyd-Warshall Algorithm to compute the cobs of all
pairs of vertices in the graph and very briefly explain why it is correct.

(b) What is the running time of your algorithm to compute the cobs? Explain briefly.

5. [13 points] Boru̇vka’s Algorithm

The first algorithm for computing minimum spanning trees was published by the Czech math-
ematician Otakar Baru̇vka in 1926 and was used for laying out electrical networks. It goes as
follows:

A = {}; \\ Comment: A is a subset of a minimum spanning tree

Consider the n vertices in the graph as n connected components;

while A contains fewer than n-1 edges {

for each connected component C {

Find the least weight edge (u,v) with one vertex in C and

one vertex not in C;

Indicate that edge (u,v) is "chosen" but do not add it yet to A;

}

Add all "chosen" edges to A;

Compute the new connected components;

}

return A \\ Comment: This is intended to be a MST!

Notice that if C1 and C2 are two different connected components before we begin the for
loop, then inside the for loop the algorithm will choose the least weight edge coming out of
component C1 and also the least weight edge coming out of C2. The edge chosen by C1 might
join C1 and C2 into a new connected component, but this new connected component will not
be discovered until the for loop has ended! In other words, both C1 and C2 will each get an
opportunity to choose the least weight edges coming out of their components.

(a) [2 points] Give a counterexample that shows that Boru̇vka’s Algorithm doesn’t work!!
(You might find it useful to use the fact that some edges in the graph may have the
same weight.) Show your counterexample graph and explain carefully why Boru̇vka’s
Algorithm would not compute a minimum spanning tree in this case.

2



(b) [5 points] Now assume that no two edges in the graph have the same weight. Such a
graph has exactly one minimum spanning tree (you may just use this fact here, although
you can think about how to prove it!) Under this assumption, prove that Boru̇vka’s
Algorithm is correct.

(c) [3 points] Why doesn’t your proof from part (b) work if some edges in the graph have
the same weights?

(d) [3 points] How could Boru̇vka’s Algorithm be modified slightly to work in the most
general case that edge weights are not necessarily distinct? Explain briefly why this
modification preserves the correctness of the algorithm.

3


