
-7- 

An Overview of C++ 

Bjarne Stroustrup 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

1 Introduction 

C++ is a general purpose programming language3 designed to make programming more enjoy- 
able for the serious programmer. Except for minor details, C++ is a superset of the C language*. 
C++ was designed to 

[l] be a better C. 
[2] support data abstraction. 
[3] support object-oriented programming. 

This paper describes the features added to C to achieve this. In addition to C, the main influences 
of the design of C++ were Simula67’ and Algo1684. 

C++ has been in use for about four years and has been applied to mpst branches of systems 
programming including compiler construction, data base management, graphics, image processing, 
music synthesis, networking, numerical software, programming environments, robotics, simulation, 
and switching. It has a highly portable implementation and there are now at least 1500 installa- 
tions including AT&T 3B, DEC VAX, Intel 80286, Motorola 68000, and Amdahl machines run- 
ning UNlXt and other operating systems*. 

2 What is Good about C? 

C is clearly not the cleanest language ever designed nor the easiest to use so why do so many 
people use it? 

[l] C is flexible: It is possible to apply C to most every application area, and to use most every 
programming technique with C. The language has no inherent limitations that preclude par- 
ticular kinds of programs from being written. 

[2] C is efficient: The semantics of C are “low level”; that is, the fundamental concepts of C 
mirror the fundamental concepts of a traditional computer. Consequently, it is relatively 
easy for a compiler and/or a programmer to efficiently utilize hardware resources for a C 
program. 

[3] C is available: Given a computer, whether the tiniest micro or the largest super-computer, 
the chance is that there is an acceptable quality C compiler available and that that C com- 
piler supports an acceptably complete and standard C language and library. There are also 
libraries and support tools available, so that a programmer rarely needs to design a new sys- 
tem from scratch. 

[4] C is portable: A C program is not automatically portable from one machine (and operating 
system) to another nor is such a port necessarily easy to do. it is, however, usually possible 
and the level of difficulty is such that porting even major pieces of software with inherent 
machine dependences is typically technically and economically feasible. 

Compared with these “first order” advantages, the “second order” drawbacks like the curious C 

? UNIX is a Trademark of AT&T Bell Laboratories. 
* C++ is available from AT&T, Software Sales and Marketing, PO Box Box 25000, Greensboro, NC 27420. USA (tele- 
phone 800-828-UNIX) or from your local sales organization for the UNIX system. 
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declarator syntax and the lack of safety of some language constructs become less important. 
Designing “a better C” implies compensating for the major problems involved in writing, debug- 
ging, and maintaining C programs withour compromising the udvuntages of C. C++ preserves al! 
these advantages and compatibility with C at the cost of abandoning claims to perfection and of 
some compiler and language complexity. However, designing a language “from scratch” does not 
ensure perfection and the C++ compilers compare favorably in run-time, have better error detec- 
tion and reporting, and equal the C compilers in code quality. 

3 A Better C 

The first aim of C++ is to be “a better C” by providing better support for the styles of pro- 
gramming for which C is most commonly used. This primarily involves providing features that 
make the most common errors unlikely (since C++ is a superset of C such errors cannot simply be 
made impossible), 

Argument Type Checking and Coercion 

The most common error in C programs is a mismatch between the type of a function argument 
and the type of the argument expected by the called function. For example: 

double sqrtta) double a; 
1 

/* . . . l / 

l 

double sq2 = sqrt(2); 

Since C does not check the type of the argument 2, the call sqrt (2) will typically cause a run 
time error or give a wrong result when the square root function tries to use the integer 2 as a dou- 
ble precision floating point number. in C++, this program will cause no problem since 2 will be 
converted to a floating point number at the point of the call. That is, sqrt (2) is equivalent to 
sqrt((double)2). 

Where an argument type does not match the argument type specified in the function declaration 
and no type conversion is defined the compiler issues an error message. For example, in C++ 
sqrt ( "Hello" ) causes a compile time error. 

Naturally, the C++ syntax also allows the type of arguments to be specified in function declara- 
tions: 

double sqrt(double); 

and a matching function definition syntax is also introduced: 

double sqrt(double d) 
t 

// . . . 
I 

Mine Functions 

Most C programs rely on macros to avoid function call overhead for small frequently-called 
operations. Unfortunately the semantics of macros are very different from the semantics of func- 
tions so the use of macros has many pitfalls. For example: 

#define mul(a,b) a+b 
int z = mul(xr3+2,y/4); 

Here z will be wrong since the macro will expand to x+3+2xy/4. Furthermore, C macro 
definitions do not follow the syntactic rules of C declarations, nor do macro names follow the usual 
C scope rules. C++ circumvents such problems by allowing the programmer to declare inline 
functions: 
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inline int mul(int a, int b) I return axb; ) 

An inline function has the same semantics as a “normal” function but the compiler can typically 
inline expand it so that the code-space and run-time efficiency of macros are achieved. 

Scoped and Typed Constants 

Since C does not have a concept of a symbolic constant macros are used. For example: 

#define TBLMAX (TBLSIZE-1) 

Such “constant macros” are neither scoped nor typed and can (if not properly parenthesized) 
cause problems similar to those of other macros. Furthermore, they must be evaluated each time 
they are used and their names are “lost” in the macro expansion phase of the compilation and con- 
sequently are not known to symbolic debuggers and other tools. In C++ constants of any type can 
be declared: 

const int TBLMAX = TBLSIZE-1; 

Varying Numbers of Arguments 

Functions taking varying numbers of arguments and functions accepting arguments of different 
types are common in C. They are a notable source of both convenience and errors. 

C functions where the type of arguments or the number of arguments (but not both) can vary, 
can be handled in a simple and type-secure manner in C++. For example, a function taking one, 
two, or three arguments of known type can be handled by supplying default argument values which 
the compiler uses when the programmer leaves out arguments. For example: 

void print(char+, char* = "-", char* = "-"); 

print("one", "two", “three”); 
print("one", -two"); // that is, print("one", "two", "-"I; 
print("one"); // that is, print("one", "-", "-"); 

Some C functions take arguments of varying types to provide a common name for functions 
performing similar operations on objects of different types. This can be handled in C++ by over- 
loading a function name. That is, the same name can be used for two functions provided the argu- 
ment types are sufficiently different to enable the compiler to “pick the right one” for each call. 
For example: 

overload print; 
void printcint); 
void print(char*); 

print(l); // integer print function 
print("tw0"); // string print function 

The most general examples of C functions with varying arguments cannot be handled in a 
type-secure manner. Consider the standard output function printf, which takes a format string 
followed by an arbitrary collection of arguments supposedly matching the format string?: 

printf("a string"); 
printf("x = %d\n",x); 
printf("name: %s\n size: %d\n", obj.name, obj.size); 

However, in C++ one can specify the type of initial arguments and leave the number and type 
of the remaining arguments unspecified. For example, printf and its variants can be declared 
like this: 

? A C++ I/O system that avoids the type insecurity of the printf approach is described in reference 3. 
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int printf(const char* .,.I; 
int fprintf(FILE*, const char* . ..I. 
int sprintf(char*, const char* . ..I. 

These declarations allows the compiler to catch errors such as 

printf(stderr,"x = %d\n",x); // error: printf does not take a FILE* 
fprintf("x = %d\n",x); // error: fprintf needs a FILE* 

Declarations as Statements 

Uninitialized variables are another common source of errors. One cause of this class of errors 
is the requirement of the C syntax that declarations can occur only at the beginning of a block 
(before the first statement). In C++, a declaration is considered a kind of statement and can con- 
sequently be placed anywhere. It is often convenient to place the declaration where it is first 
needed so that it can be initialized immediately. For example: 

void some-function(char* p) 

if (p==o) error("p==O in some-function"); 

int length = strlen(P); 
// . . . 

I 

4 Support for Data Abstraction 

C++ provides support for data abstraction: the programmer can define types that can be used 
as conveniently as built-in types and in a similar manner. Arithmetic types such as rational and 
complex numbers are common examples: 

class complex { 
double re, im; 

public: 
complex(double r, double i) < re=r; im=i; ) 
complex(double r) ( re=r; im=O; ) // float->complex conversion 

friend complex operator+(complex, complex); 
friend complex operator-(complex, complex); // binary minus 
friend complex operator-(complex); // unary minus 
friend complex operator+(complex, complex); 
friend complex operator/(complex, complex); 
// . . . 

1 

The declaration of class (that is, user-defined type) complex specifies the representation of a 
complex number and the set of operations on a complex number. The representation is private; 
that is, re and im are accessible only to the functions defined in the declaration of class complex. 
Such functions can be defined like this: 

complex operator+(complex al, complex a2) 
{ 

return complex(al.re+a2.re, al.im+a2.im); 
1 

and used like this: 
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main( 1 

complex a = 2.3; 
complex b = l/a; 
complex c = a+b+complex(l,2.3); 
ff . . . 

I 

Functions declared in a class declaration using the keyword friend are called friend functions. 
They do not differ from ordinary functions except that they may use private members of classes 
that name them friends. A function can be declared as a friend of more than one class. Other 
functions declared in a class declaration are called member functions. A member function is in the 
scope of the class and must be invoked for a specific object of that class. 

Initialization and Cleanup 

When the representation of a type is hidden some mechanism must be provided for a user to 
initialize variables of that type. A simple solution is to require a user to call some function to ini- 
tialize a variable before using it. This is error prone and inelegant. A better solution is to allow 
the designer of a type to provide a distinguished function to do the initialization. Given such a 
function, allocation and initialization of a variable becomes a single operation (often called instan- 
tiation) instead of two separate operations. Such an initialization function is called a constructor. 
In cases where construction of objects of a type is non-trivial one often needs a complementary 
operation to clean up objects after their last use. In C++ such a cleanup function is called a des- 
tructor. Consider a vector type: 

class vector ( 
int sz; 
into v; 

public: 
vector(int); 
-vector(); 
// . . . 

1; 

// number of elements 
// pointer to integers 

// constructor 
// destructor 

The vector constructor can be defined to allocate a suitable amount of space like this: 

vector ::vector(int s) 

if (sc=O) error(“bad vector size”); 
sz = s; 
v = new intls]; // allocate an array of “s” integers 

1 

The cleanup done by the vector destructor consists of freeing the storage used to store the vector 
elements for re-use by the free store manager: 

vector ::-vector() 
f 

delete v; // deallocate the memory pointed to by v 
1 

Clearly C++ does not support garbage collection. This is, however, compensated for by ena- 
bling a type to maintain its own storage management without requiring intervention from a user. 

Free Store Operators 

The operators new and delete were introduced to provide a standard notation for free store 
allocation and deallocation. A user can provide alternatives to their default implementations by 
defining functions called operator new and operator delete. For built-in types the new and 
delete operators provides only a notational convenience (compared with the standard C functions 
malloc( ) and free ( )). For user-defined types such as vector the free store operators ensure 
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that constructors and destructors are called properly: 

vector* fctltint n) 

vector v(n); // allocate a vector on the stack 
// the constructor is called 

vector* p = new vector(n); // allocate a vector on the free store 
I/ the constructor is called 

// .** 
return p; 
// the destructor is implicitly called for "v" here 

void fctZ() 

vector* pv = fctl(l0); 
// . . . 
delete pv; // call the destructor and free the store 

References 

C provides (only) “call by value” semantics for function argument passing; “call by reference” 
can be simulated by explicit use of pointers. This is sufficient, and often preferable to using “pass 
by value” for the built-in types of C. However, it can be inconvenient for larger objects? and can 
get seriously in the way of defining conventional notation for user-defined types in C++. Conse- 
quently, the concept of a reference is introduced. A reference acts as a name for an object; Tb 

means reference to T. A reference must be initialized and becomes an alternative name for the 
object it is initialized with. For example: 

int a = 1; // “a’ is an integer initialized to "1" 
intb. r = a; // "rn is a reference initialized to "a" 

The reference r and the integer a can now be used in the same way and with the same meaning. 
For example: 

int b = r; // "b" is initialized to the value of nrn, that is, "1" 
r = 2; // the value of "r", that is, the value of "a" becomes "2" 

References enable variables of types with “large representations” to be manipulated efficiently 
without explicit use of pointers. Constant references are particularly useful: 

matrix operator+(const matrix&, const matrix&) 

1 
// code here cannot modify the value of nan or "b" 

1 

matrix a = b+c; 

In such cases the “call by value” semantics are preserved while achieving the efficiency of “call by 
reference’*. 

Assignment and Initialization 

Controlling construction and destruction of objects is sufficient for many, but not all, types. It 
can also be necessary to control all copy operations. Consider: 

t as indicated by an inconsistency in the C semantics: arrays are always passed by reference. 
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vector vlflO0); // make VI a vector of 100 elements 
vector v2 = vl; // make v2 a copy of vl 

VI = v2; // assign VI to v2 (that is, copy the elements) 

Declaring a function with the name operator= in the declaration of class vector specifies that 
vector assignment is to be implemented by that function: 

class vector { 
int* v; 
int sz; 

public: 
// . . . 
void operator=(vectorl); // assignment 

1; 

Assignment might be defined like this: 

vector : : operator=(vectorb a) // check size and copy elements 

if (sz I= a.sz) error("bad vector size for ="); 
for (int i = 0; i<sz; i++) vfil = a.v[il; 

Since the assignment operation relies on the “old value” of the vector assigned to, it cannot be 
used to implement initialization of one vector with another. What is needed is a constructor that 
takes a vector argument: 

class vector { 
// . . . 
vector(int); // create vector 
vector(vectorl); // create vector and copy elements 

1; 

vector ::vector(vectorb a) // initialize a vector from another vector 

sz = a.sz; // same size 
v = new int[sz]; // allocate element array 
for (int i = 0; i<sz; i++) v[i] = a.v[il; // same values 

I 

A constructor like this (of the form X(X&)) is used to handle all initialization. This includes argu- 
ments passed “by value” and function return values: 

vector v2 = VI; // use vector(vectorb) constructor to initialize 

void f(vector); 
f(v2); // use vector(vectorl) constructor to pass a copy of v2 

vector g(int sz) 
t 

vector v(sz); 
return v; // use vector(vectorb) constructor to return a copy of v 

Operator Overloading 

As demonstrated above, standard operators like +, -, +, / can be defined for user-defined 
types, as can assignment and initialization in its various guises. In general, all the standard opera- 
tors with the exception of 

--, . , ?: 

can be overloaded. The subscripting operator [ ] and the function application operator ( 1 have 
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proven particularly useful. The C “operator assignment” operators, such as += and +=, have also 
found many uses. 

It is not possible to redefine an operator when applied to built-in data types, to define new 
operators, or to redefine the precedence of operators. 

Coercions 

User-defined coercions, like the one from floating point numbers to complex numbers implied 
by the constructor complex( double 1, have proven unexpectedly useful in C++. Such coercions 
can be applied explicitly or the programmer can rely on the compiler adding them implicitly where 
necessary and unambiguous: 

complex a = complex(l); 
complex b = 1; // implicit: 1 --, complex(l) 
a = b+complex(2); 
a = b+2; // implicit: 2 --> complex(2) 
a = 2+b; // implicit: 2 --, complex(2) 

Coercions were introduced into C++ because mixed mode arithmetic is the norm in languages 
used for numerical work and because most user-defined types used for “calculation” (for example, 
matrices, character strings, and machine addresses) have natural mappings to and/or from other 
types. 

Great care is taken (by the compiler) to apply user-defined conversions only where a unique 
conversion exists. Ambiguities caused by conversions are compile time errors. 

It is also possible to define a conversion to a type without modifying the declaration of that 
type. For example: 

class point { 
float dist; 
float angle; 

public : 
// . . . 
operator complex0 // convert point to complex number 

return polar(dist,angle); 
1 
operator doublet 1 // convert point to real number 

if (angle) error(“cannot convert point to real: anglel=O”); 
return dist; 

1 
1; 

These conversions could be used like this: 

void some-function(point a) 
t 

complex 2 = a; // z = a.operator complex0 
double d = a; // d = a.operator double0 
complex 23 = a+3; // 23 = a.operator complex0 + complex(3); 
// . . . 

This is particularly useful for defining conversions to built-in types since there is no declaration for 
a built-in type for the programmer to modify. It is also essential for defining conversions to “stan- 
dard” types where a change may have (unintentionally) wide ranging ramifications and where the 
average programmer has no access to the declaration. 
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5 Support for Object-Oriented Programming 

C++ provides support for object-oriented programming: the programmer can define class 
hierarchies and a call of a member function can depend on the actual type of an object (even where 
the actual type is unknown at compile time). That is, the mechanism that handles member func- 
tion calls handles the case where it is known at compile time that an object belongs to some class in 
a hierarchy, but exactly which class can only be determined at run time. See examples below. 

Derived Classes 

C++ provides a mechanism for expressing commonality among different types by explicitly 
defining a class to be part of another. This allows re-use of classes without modification of exist- 
ing classes and without replication of code. For example, given a class vector: 

class vector 1 
// . . . 

public: 
// . . . 
vector(int); 
inth operator[](int); // overload the subscripting operator: [I 

one might define vector for which a user can define the index bounds: 

class vet : public vector { 
int low, high; 

public : 
vec(int, int); 
intb operator[](int); 

I; 

Defining vet as 

: public vector 

mean; that first of all a vet is a vector. That is, type vet has (“inherits”) all the properties of 
type vector in addition to the ones declared specifically for it. Class vector is said to be the 
base class for vet, and conversely vet is said to be derived from vector. 

Class vet modifies class vector by providing a different constructor, requiring the user to 
specify the two index bounds rather than the size, and by providing its own access function 
operator[]( ). A vet’s operator1 I( ) is easily expressed in terms of vector’s 
operator1 I ( ): 

intd vet: : operator[](int i) 

return vector:: operator[](i-low); 
) 

The scope resolution operator : : is used to avoid getting caught in an infinite recursion by calling 
vet: :operator [ ] ( ) from itself. Note that vet : :operator [ 1 ( ) had to use a function like 
vector: : operator I ] ( ) to access elements. It could not just use vector’s members v and sz 
directly since they were declared private and therefore accessible only to vector’s member func- 
tions. 

The constructor for vet can be written like this: 

vet ::vec(int lb, int hb) : (hb-lb+l) 
t 

if (hb-lb<01 hb = lb; 
low = lb; 
high = hb; 

I 

The construct : (hb-lb+ 1) is used to specify the argument list needed for the base class construc- 
tor vector ( 1. 
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Class vet can be used like this: 

void some-functionlint 1, int h) 

vet vl(1.h); 
const int sz = h-1+1; 
vector v2(sz); 
// . . . 
for (int i = 0; i<sz; i++) v2Cil = vl[l+i]; // copy elements explicitly 
v2 = vl; // copy elements by using vector::operator=() 

1 

Virtual Functions 

Class derivation (often called subclassing) is a powerful tool in its own right but a facility for 
run-time type resolution is needed to support object-oriented programming. 

Consider defining a type shape for use in a graphics system. The system has to support cir- 
cles, triangles, squares, and many other shapes. First specify a class that defines the general pro- 
perties of all shapes: 

class shape 1 
point center ; 
color col; 
// . . . 

public: 
point where0 { return center; ) 
void move(point to) { center = to; draw( ); 1 
virtual void drawi 1; 
virtual void rotatecint); 
// ..* 

1; 

The functions for which the calling interface can be defined, but where the implementation can- 
not be defined except for a specific shape, have been marked virtual (the Simula67 and C++ term 
for “to be defined later in a class derived from this one”). Given this definition one can write 
general functions manipulating shapes: 

void rotate-all(shape* v, int size, int angle) 
// rotate all members of vector “v” of size "size" “angle” degrees 
{ 

for tint i = 0; i < size; i++) v[i].rotatetangle); 
1 

For each shape vC i], the proper rotate function for the actual type of the object will be called. 
That “actual type” is not known at compile time. 

To define a particular shape we must say that it is a shape (that is, derive it from class shape) 
and specify its particular properties (including the virtual functions): 

class circle : public shape { 
int radius; 

public: 
void draw0 { /* . . . */ ]; 
void rotatetint) 0 /I yes, the null function 

1; 

In many contexts it is important that the C++ virtual function mechanism is very nearly as effi- 
cient as a “normal” function call. The additional run-time overhead is about 4 memory references 
(dependent on the machine architecture and the compiler) and the memory overhead is one word 
per object plus one word per virtual function per class. 
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Visibility Control 

The basic scheme for separating the (public) user interface from the (private) implementation 
details has worked out very well for data abstraction uses of C++. It matches the idea that a type 
is a black box. It has proven to be less than ideal for object-oriented uses. 

The problem is that a class defined to be part of a class hierarchy is not simply a black box. It 
is often primarily a building block for the design of other classes. In this case the simple binary 
choice publiclprivule can be constraining. A third alternative is needed: a member should be 
private as far as functions outside the class hierarchy are concerned but accessible to member func- 
tions of a derived class in the same way that it is accessible to members of its own class. Such a 
member is said to be protected. 

For example, consider a class node for some kind of tree: 

class node { 
// private stuff 

protected: 
node* left; 
node* right; 
// more protected stuff 

public: 
virtual void print(); 
// more public stuff 

I; 

The pointers left and right are inaccessible to the general user but any member function of 
a class derived from class node can manipulate the tree without overhead or inconvenience. 

The protection/hiding mechanism applies to names independently of whether a name refers to a 
function or a data member. This implies that one can have private and protected function 
members. Usually it is good policy to keep data private and present the public and 
protected interfaces as sets of functions. This policy minimizes the effect of changes to a class 
on its users and consequently maximizes its implementor’s freedom to make changes. 

Another refinement of the basic inheritance scheme is that it is possible to inherit public 
members of a base class in such a way that they do not become public members of the derived 
class. This can be used to provide restricted interfaces to standard classes. For example: 

class dequeue { 
// . . . 
void insert(elem*); 
void append(elem+); 
elem* remove ( ) ; 

I; 

Given a dequeue a stack can be defined as a derived class where only the insert ( ) and 
remove t ) operations are defined: 

class stack : dequeue { // note: just ":" not ": public" 
// members of dequeue are private members of stack 

public: 
dequeue ::insert; // make "insert" a public member of stack 
dequeue : : remove ; // make “remove” a public member of stack 

1; 

Alternatively, inline functions can be defined to give these operations the conventional names: 

class stack : dequeue I 
public: 

void push(elem+ ee) { dequeue::insert(ee); 1 
elem+ pop0 { return dequeue::remove( 1; 1 

1; 
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6 What is Missing? 

C++ was designed under severe constraints of compatibility, internal consistency, and effi- 
ciency: no feature was included that 

[I] would cause a serious incompatibility with C at the source or linker levels. 
[2] would cause run-time or space overheads for a program that did not use it. 
[3] would increase run-time or space requirements for a C program. 
[4] would significantly increase the compile time compared with C. 
[5] could only be implemented by making requirements of the programming environment 

(linker, loader, etc.) that could not be simply and efficiently implemented in a traditional C 
programming environment. 

Features that might have been provided but weren’t because of these criteria include garbage col- 
lection, parameterized classes, exceptions, multiple inheritance, support for concurrency, and 
integration of the language with a programming environment. Not all of these possible extensions 
would actually be appropriate for C++ and unless great constraint is exercised when selecting and 
designing features for a language a large, unwieldy, and inefficient mess will result. The severe 
constraints on the design of C++ have probably been beneficial and will continue to guide the evo- 
lution of C++. 

7 Conclusions 

C++ has succeeded in providing greatly improved support for traditional C-style programming 
without added overhead. In addition, C++ provides sufficient language support for data abstrac- 
tion and object-oriented programming in demanding (both in terms of machine utilization and 
application complexity) real-life applications. C++ continues to evolve to meet demands of new 
application areas. There still appears to be ample scope for improvement even given the (self 
imposed) Draconian criteria for compatibility, consistency, and efficiency. However, currently the 
most active areas of development are not the language itself but libraries and support tools in the 
programming environment. 
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