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Type Systems, Type Inference, and Polymorphism

Programming involves a wide range of computational constructs, such as data struc-

tures, functions, objects, communication channels, and threads of control. Because

programming languages are designed to help programmers organize computational

constructs and use them correctly, many programming languages organize data and

computations into collections called types. In this chapter, we look at the reasons

for using types in programming languages, methods for type checking, and some

typing issues such as polymorphism and type equality. A large section of this chap-

ter is devoted to type inference, the process of determining the types of expressions

based on the known types of some symbols that appear in them. Type inference

is a generalization of type checking, with many characteristics in common, and a

representative example of the kind of algorithms that are used in compilers and

programming environments to determine properties of programs. Type inference

also provides an introduction to polymorphism, which allows a single expression to

have many types.

6.1 TYPES IN PROGRAMMING

In general, a type is a collection of computational entities that share some common

property. Some examples of types are the type Int of integers, the type Int→Int

of functions from integers to integers, and the Pascal subrange type [1 .. 100]

of integers between 1 and 100. In concurrent ML there is the type Chan Int of

communication channels carrying integer values and, in Java, a hierarchy of types

of exceptions.

There are three main uses of types in programming languages:

� naming and organizing concepts,

� making sure that bit sequences in computer memory are interpreted consistently,

� providing information to the compiler about data manipulated by the program.

These ideas are elaborated in the following subsections.

Although some programming language descriptions will say things like, “Lisp

is an untyped language,” there is really no such thing as an untyped programming
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language. In Lisp, for example, lists and atoms are two different types: list opera-

tions can be applied to lists but not to atoms. Programming languages do vary a

great deal, however, in the ways that types are used in the syntax and semantics

(implementation) of the language.

6.1.1 Program Organization and Documentation

A well-designed program uses concepts related to the problem being solved. For

example, a banking program will be organized around concepts common to banks,

such as accounts, customers, deposits, withdrawals, and transfers. In modern pro-

gramming languages, customers and accounts, for example, can be represented as

separate types. Type checking can then check to make sure that accounts and cus-

tomers are treated separately, with account operations applied to accounts but not

used to manipulate customers. Using types to organize a program makes it easier

for someone to read, understand, and maintain the program. Types therefore serve

an important purpose in documenting the design and intent of the program.

An important advantage of type information, in comparison with comments

written by a programmer, is that types may be checked by the programming lan-

guage interpreter or compiler. Type checking guarantees that the types written into

a program are correct. In contrast, many programs contain incorrect comments, ei-

ther because the person writing the explanation was careless or because the program

was later changed but the comments were not.

6.1.2 Type Errors

A type error occurs when a computational entity, such as a function or a data value,

is used in a manner that is inconsistent with the concept it represents. For example,

if an integer value is used as a function, this is a type error. A common type error

is to apply an operation to an operand of the wrong type. For example, it is a

type error to use integer addition to add a string to an integer. Although most
programmers have a general understanding of type errors, there are some subtleties

that are worth exploring.

Hardware Errors. The simplest kind of type error to understand is a machine

instruction that results in a hardware error. For example, executing a “function

call”

x()

is a type error if x is not a function. If x is an integer variable with value 256, for

example, then executing x() will cause the machine to jump to location 256 and

begin executing the instructions stored at that place in memory. If location 256

contains data that do not represent a valid machine instruction, this will cause a

hardware interrupt. Another example of a hardware type error occurs in executing

an operation
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float add(3, 4.5)

where the hardware floating-point unit is invoked on an integer argument 3. Because

the bit pattern used to represent 3 does not represent a floating-point number in the

form expected by the floating-point hardware, this instruction will cause a hardware

interrupt.

Unintended Semantics. Some type errors do not cause a hardware fault or inter-

rupt because compiled code does not contain the same information as the program

source code does. For example, an operation

int add(3, 4.5)

is a type error, as int add is an integer operation and is applied here to a floating-

point number. Most hardware would perform this operation, however, because the

bits used to represent 4.5 are a legal integer bit pattern. The integer that this bit

pattern represents, however, is not mathematically related to 4.5, so the operation

is not meaningful. More specifically, int add is intended to perform integer addition,

but the result of int add(3, 4.5) is not the arithmetic sum of the two operands.

The error associated with int add(3, 4.5) may become clearer if we think

about how a program might apply integer addition to a floating-point argument.

To be concrete, suppose a program defines a function f that adds three to its

argument,

f x = 3 + x

and someplace within the scope of this definition we also declare a floating-point

value z:

z :: Float = 4.5

If the programming language compiler or interpreter allows the call f z and the

language does not automatically convert floating-point numbers to integers in this

situation, then the function call f z will cause a run-time type error because

int add(3, 4.5) will be executed. This situation is a type error because integer

addition is applied to a non-integer argument.

The reason why many people find the concept of type error confusing is that

type errors generally depend on the concepts defined in a program or programming

language, not the way that programs are executed on the underlying hardware. To

be specific, it is just as much of a type error to apply an integer operation to a

floating-point argument as it is to apply a floating-point operation to an integer

argument. It does not matter which causes a hardware interrupt on any particular

computer.

Inside a computer, all values are stored as sequences of bytes of bits. Because
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integers and floating-point numbers are stored as four bytes on many machines,

some integers and floating-point numbers overlap; a single bit pattern may repre-

sent an integer when it is used one way and a floating-point number when it is

used in another. Nonetheless, a type error occurs when a pattern that is stored

in the computer for the purpose of representing one type of value is used as the

representation of another type of value.

6.1.3 Types and Optimization

Type information in programs can be used for many kinds of optimizations. One

example is finding components of records (as they are called in Haskell and ML)

or structs (as they are called in C). The component-finding problem also arises in

object-oriented languages. A record consists of a set of entries of different types.

For example, a student record may contain a student name of type String and a

student number of type Integer, written here as Haskell type declaration:

data Student = Student {name :: String, number :: Int}

In a program that manipulates records, there might be an expression of the form

name r, meaning the name field of the record r. A compiler must generate machine

code that, given the location of record r in memory at run time, finds the location of

the field name of this record at run time. If the compiler can compute the type of the

record at compile time, then this type information can be used to generate efficient

code. More specifically, the type of r makes it is possible to compute the location of

name r relative to the location r, at compile time. For example, if the type of r is

Student, then the compiler can build a little table storing the information that name

occurs before number in each Student record. Using this table, the compiler can

determine that name is in the first location allocated to the record r. In this case,

the expression name r is compiled to code that reads the value stored in location

r+1 (if location r is used for something else besides the first field). However, for

records of a different type, the name field might appear second or third. Therefore,

if the type of r is not known at compile time, the compiler must generate code to

compute the location of name from the location of r at run time. This will make the

program run more slowly. To summarize: Some operations can be computed more

efficiently if the type of the operand is known at compile time.

In some object-oriented programming languages, the type of an object may be

used to find the relative location of parts of the object. In other languages, however,

the type system does not give this kind of information and run-time search must

be used.

6.2 TYPE SAFETY AND TYPE CHECKING

6.2.1 Type Safety

A programming language is type safe if no program is allowed to violate its type

distinctions. Sometimes it is not completely clear what the type distinctions are in a
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specific programming language. However, there are some type distinctions that are

meaningful and important in all languages. For example, a function has a different

type from an integer. Therefore, any language that allows integers to be used as

functions is not type safe. Another action that we always consider a type error is

to access memory that is not allocated to the program.

The following table characterizes the type safety of some common programming

languages. We will discuss each form of type error listed in the table in turn.

Safety Example languages Explanation

Not safe C and C++ Type casts, pointer arithmetic
Almost safe Pascal Explicit deallocation; dangling pointers
Safe Lisp, Smalltalk, ML, Haskell, Java Complete type checking

Type Casts. Type casts allow a value of one type to be used as another type. In

C in particular, an integer can be cast to a function, allowing a jump to a location

that does not contain the correct form of instructions to be a C function.

Pointer Arithmetic. C pointer arithmetic is not type safe. The expression *(p+i)

has type A if p is defined to have type A*. Because the value stored in location p+i

might have any type, an assignment like x = *(p+i) may store a value of one type

into a variable of another type and therefore may cause a type error.

Explicit Deallocation and Dangling Pointers. In Pascal, C, and some other lan-

guages, the location reached through a pointer may be deallocated (freed) by the

programmer. This creates a dangling pointer, a pointer that points to a location

that is not allocated to the program. If p is a pointer to an integer, for example,

then after we deallocate the memory referenced by p, the program can allocate

new memory to store another type of value. This new memory may be reachable

through the old pointer p, as the storage allocation algorithm may reuse space that

has been freed. The old pointer p allows us to treat the new memory as an integer

value, as p still has type int. This violates type safety. Pascal is considered “mostly

safe” because this is the only violation of type safety (after the variant record and

other original type problems are repaired).

6.2.2 Compile-Time and Run-Time Checking

In many languages, type checking is used to prevent some or all type errors. Some

languages use type constraints in the definition of legal program. Implementations

of these languages check types at compile time, before a program is started. In these

languages, a program that violates a type constraint is not compiled and cannot

be run. In other languages, checks for type errors are made while the program is

running.

Run-Time Checking. In programming languages with run-time type checking,

the compiler generates code so that, when an operation is performed, the code

checks to make sure that the operands have the correct type. For example, the

Lisp language operation car returns the first element of a cons cell. Because it is

a type error to apply car to something that is not a cons cell, Lisp programs are

implemented so that, before (car x) is evaluated, a check is made to make sure

that x is a cons cell. An advantage of run-time type checking is that it catches type



6.2 Type Safety and Type Checking 123

errors. A disadvantage is the run-time cost associated with making these checks.

Compile-Time Checking. Many modern programming languages are designed so

that it is possible to check expressions for potential type errors. In these languages,

it is common to reject programs that do not pass the compile-time type checks.

An advantage of compile-time type checking is that it catches errors earlier than

run-time checking does: A program developer is warned about the error before

the program is given to other users or shipped as a product. In addition, compile-

time checking guarantees the absence of type errors regardless of the input to the

program. In contrast, dynamic checking will only find type errors in program paths

followed during execution. Hence, dynamic checking can make it difficult to find

type errors on program paths that are only executed for rarely-occurring inputs.

Because compile-time checks may eliminate the need to check for certain errors

at run time, compile-time checking can make it possible to produce more efficient

code. For a specific example, compiled Haskell code is two to four times faster than

Lisp code. The primary reason for this speed increase is that static type checking

of Haskell programs greatly reduces the need for run-time tests.

Conservativity of Compile-Time Checking. A property of compile-time type

checking is that the compiler must be conservative. This mean that compile-time

type checking will find all statements and expressions that produce run-time type

errors, but also may flag statements or expressions as errors even if they do not

produce run-time errors. More specifically, most checkers are both sound and con-

servative. A type checker is sound if no programs with errors are considered correct.

A type checker is conservative if some programs without errors are still considered

to have errors.

There is a reason why most type checkers are conservative: For any Turing-

complete programming language, the set of programs that may produce a run-

time type error is undecidable. This follows from the undecidability of the halting

problem. To see why, consider the following form of program expression:

if (complicated-expression-that-could-run-forever)

then (expression-with-type-error)

else (expression-with-type-error)

It is undecidable whether this expression causes a run-time type error,

as the only way for expression-with-type-error to be evaluated is for

complicated-expression-that-could-run-forever to halt. Therefore, deciding

whether this expression causes a run-time type error involves deciding whether

complicated-expression-that-could-run-forever halts.

Because the set of programs that have run-time type errors is undecidable,

no compile-time type checker can find type errors exactly. Because the purpose

of type checking is to prevent errors, type checkers for type-safe languages are

conservative. It is useful that type checkers find type errors, and a consequence of

the undecidability of the halting problem is that some programs that could execute

without run-time error will fail the compile-time type-checking tests.

The main trade-offs between compile-time and run-time checking are summa-
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rized in the following table.

Form of Type Checking Advantages Disadvantages

Run-time Prevents type errors Slows program execution
Need not be conservative

Compile-time Prevents type errors May restrict programming
Eliminates run-time tests because tests are
Finds type errors before conservative.

execution and run-time
tests

Combining Compile-Time and Run-Time Checking. Most programming lan-

guages actually use some combination of compile-time and run-time type checking.

In Java, for example, static type checking is used to distinguish arrays from inte-

gers, but array bounds errors (which are a form of type error) are checked at run

time.

6.3 TYPE INFERENCE

Type inference is the process of determining the types of expressions based on

the known types of some symbols that appear in them. The difference between

type inference and compile-time type checking is really a matter of degree. A type-

checking algorithm goes through the program to check that the types declared by

the programmer agree with the language requirements. In type inference, the idea is

that some information is not specified, and some form of logical inference is required

for determining the types of identifiers from the way they are used. For example,

identifiers in Haskell are not usually declared to have a specific type. The type

system infers the types of Haskell identifiers and expressions that contain them

from the operations that are used. Type inference was invented by Robin Milner

(see the biographical sketch) for the ML programming language. Similar ideas were

developed independently by Curry and Hindley in connection with the study of

lambda calculus.

Although practical type inference was developed for ML, type inference is ap-

plicable to other languages. Haskell, for example, uses the same basic technique. In

principle, type inference could also be applied to languages like C. We study type

inference in some detail because it illustrates the central issues in type checking

and because type inference illustrates some of the central issues in algorithms that

find any kind of program errors.

In addition to providing a flexible form of compile-time type checking, type in-

ference supports polymorphism. As we will see when we subsequently look at the

type-inference algorithm, the type-inference algorithm uses type variables as place-

holders for types that are not known. In some cases, the type-inference algorithm

resolves all type variables and determines that they must be equal to specific types

such as Int, Bool, or String. In other cases, the type of a function may contain

type variables that are not constrained by the way the function is defined. In these

cases, the function may be applied to any arguments whose types match the form

given by a type expression containing type variables.
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Although type inference and polymorphism are independent concepts, we dis-

cuss polymorphism in the context of type inference because polymorphism arises

naturally from the way type variables are used in type inference.

We will use Haskell to illustrate the basic features of the type inference algo-

rithm. Because overloading complicates type inference, we will work with a sim-

plified version of Haskell for the rest of this chapter, called µHaskell. In µHaskell,

there is no overloading, so all constants, built-in operators, and other functions

have purely monomorphic or polymormphic types. For example, the number 1 in

µHaskell has type Int rather than the overloaded type Num a => a that we saw in

Section 5.2.3. Any overloaded type in Haskell has a prefix similar to Num a =>...,

so it is easy to identify overloaded types by noting the absence of such a prefix.

6.3.1 First Examples of Type Inference

Here are two Haskell type-inference examples to give you some feel for how Haskell

type inference works. The behavior of the type-inference algorithm is explained

only superficially in these examples, just to give some of the main ideas. We will

go through the type inference process in detail in Subsection 6.3.2.

Example 6.1

f1 x = x + 2

f1 :: Int → Int

The function f1 adds 2 to its argument. In µHaskell, constant 2 has type Int and

the operator + has type Int → Int. Therefore, the function argument x must be

an integer. Putting these observations together, we can see that f1 must have type

Int → Int.

Example 6.2

f2 (g,h) = g(h(0))

f2 :: (a → b, Int → a) → b

The type-inference algorithm notices that h is applied to an integer argument, and so

h must be a function from Int to something. The algorithm represents “something”

by introducing a type variable, which is written as a lower-case letter a. The type-

inference algorithm then deduces that g must be a function that takes whatever h

returns (something of type a) and then returns something else. Because g is not

constrained to return the same type of value as h, the algorithm represents this

second something by a new type variable, b. Putting the types of h and g together,

we can see that the first argument to f2 has type (a → b) and the second has

type (Int → a). Function f2 takes the pair of these two functions as an argument

and returns the same type of value as g returns. Therefore, the type of f2 is (a →
b, Int → a) → b.



126 Type Systems, Type Inference, and Polymorphism

6.3.2 Type-Inference Algorithm

The Haskell type-inference algorithm uses the following three steps to determine

the type of an expression:

1. Assign a type to the expression and each subexpression. For any compound

expression or variable, use a type variable. For known operations or constants,

such as + or 3, use the type that is known for this symbol.

2. Generate a set of constraints on types, using the parse tree of the expression.

These constraints reflect the fact that if a function is applied to an argument,

for example, then the type of the argument must equal the type of the domain

of the function.

3. Solve these constraints by means of unification, which is a substitution-based

algorithm for solving systems of equations. (More information on unification

appears in the chapter on logic programming.)

The type-inference algorithm is explained by a series of examples. These examples

present the following issues:

� explanation of the algorithm

� a polymorphic function definition

� application of a polymorphic function

� a recursive function

� a function with multiple clauses

� type inference indicates a program error

Altogether, these six examples should give you a good understanding of the type-

inference algorithm, except for the interaction between type inference and overload-

ing. The interaction between overloading and type inference is not covered in this

book.

Example 6.3 Explanation of the Algorithm
We will explain the type-inference algorithm using this example function:

add x = 2 + x

add :: Int → Int

The easiest way to understand the algorithm is to consider the parse tree of the

expression, which is shown in Figure 6.1. The top-level node Fun indicates that the

parse tree is that of a function declaration. The first two children of the Fun node

represent variables bound by the Fun node: the name of the function, add, and

its argument, x, respectively. The final child is the parse tree of the body of the

function. In the body, the operator ‘+’ is treated as a curried function rather than

an infix operator (Think of it as (+) 2 x. In Haskell, putting parentheses around an

operator converts the operator to a curried function). The nodes labeled ‘@’ denote

function applications, in which the left child is applied to the right child. Constant

expressions (‘+’ and 3) get their own nodes, as do variables (x). Variable nodes are

special because they point back to their binding occurrence using a dashed line.
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add x

+ 2

@ x

@

Fun

Figure 6.1. Parse tree for add function

Type inference works by applying the following steps to this parse tree.

1. Assign a type variable to the expression and each subexpression.

We illustrate this step by redrawing the graph, writing a type next to each node,

as shown in Figure 6.2. Each of these types, written t i for some integer i, is a

type variable, representing the eventual type of the associated expression.

For example, the type t 0, the type associated with the add identifier, is the

type of the function as a whole, type t 3 is the type of the literal 2, and type

t 4 is the type of the (+) function applied to the literal 2. Each occurrence of a

bound variable must be given the same type because dynamically, all such variables

refer to the same value. Consequently, each bound variable is given the same type

variable as its binding site. For example, the x variable node under the application

node is given type t 1 to match the binding node it references.

add :: t_0 x :: t_1

(+) :: t_2 2 :: t_3

(@) :: t_4 x :: t_1

(@) :: t_6

Fun

Figure 6.2. Parse tree labeled with type variables

2. Generate a set of constraints on types, using the parse tree of the expression.

Constraints are equations between type expressions that must be solved. Fig-
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ure 6.8 shows the parse tree with the generated constraints. The constraints gener-

ated at each node depend upon what kind of node it is.

add :: t_0 x :: t_1

(+) :: t_2
t_2 = Int -> Int -> Int

2 :: t_3
t_3 = Int

(@) :: t_4
t_2 = t_3 -> t_4

x :: t_1

(@) :: t_6
t_4 = t_1 -> t_6

Fun
t_0 = t_1 -> t_6

Figure 6.3. Parse tree labeled with type constraints

Constant Expression: Because µHaskell has no overloading, the type of each

constant expression is fixed. Hence, we add a constraint equating the type

variable of the node with the known type of the constant.

For example, we set t 3 = Int because literal 2 has type Int. Similarly, we

set t 2 = Int -> (Int -> Int) because the (+) function has type Int ->

(Int -> Int).

Variable: By themselves, variables do not tell us anything about the kind of

value they represent, so variable nodes do not introduce any type constraints.

Function Application: (@ nodes). If expression f is applied to expression a,

then f must have a function type. In addition, the type of a must be the

type of the domain of this function, and the type of f a must be the type

of the result of the function. In symbols, if the type of f is t f, the type of

a is t a, and the type of f a is t r, then we must have t f = t a -> t r.

In the example, this typing rule is used at the ‘@’ nodes:

Subexpression @ (+) 2: Constraint t 2 = t 3 -> t 4

Subexpression @ (@ (+) 2) x: Constraint t 4 = t 1 -> t 6

In the subexpression @ (+) 2, the type of the left-child (the ‘(+)’ node) is

t 2, the type of the right child (the ‘2’ node) is t 3, and the type of the

application is t 4. Therefore, we must have that t 2 = t 3 -> t 4. This is

the constraint associated with the @ (+) 2 node. The reasoning for subex-

pression @(@ (+) 2) x is similar: the type of the function @ (+) 2 is t 4,

the type of the argument x is t 1, and the type of the application is t 6.
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Therefore, we must have t 4 = t 1 -> t 6.

Function Definition: The type of a function is a function type from the type

of the argument to the type of the body. In symbols, if f is a function with

argument x and body b, then if f has type t f, x has type t x, and b has

type t b, then these types must satisfy the constraint t f = t x -> t b.

For our example expression, there is one function definition, corresponding

to the Fun node, which gives rise the following constraint:

Subexpression add x = @ (@ (+) 2) x: Constraint t 0 = t 1 -> t 6

In words, the type of the add function is t 0, the type of the function argu-

ment x is t 1, and the type of the function body is t 6, which gives us the

equation t 0 = t 1 -> t 6.

3. Solve the generated constraints using unification.

Unification is a standard algorithm for solving systems of equations by substi-

tution. The general properties of this algorithm are not discussed here. Instead, the

process is shown by example in enough detail that you should be able to figure out

the types of simple expressions on your own.

For our example, we have generated the following constraints, which we can

read off from the annotated parse tree in Figure 6.8.

(1) t 0 = t 1 -> t 6

(2) t 4 = t 1 -> t 6

(3) t 2 = t 3 -> t 4

(4) t 2 = Int -> (Int -> Int)

(5) t 3 = Int

If there is a way of associating type expression to type variables that makes all

of these equations true, then the expression is well typed. If so, the type of the

add function will be the type expression equal to the type variable t 0. If there

is no way of associating type expression to type variables that makes all of these

equations true, then there is no type for this expression. In this case, the type-

inference algorithm will fail, resulting in an error message that says the expression

is not well typed.

For Equations (3) and (4) to be true, it must be the case that t 3 -> t 4 =

Int -> (Int -> Int), which implies that

(6) t 3 = Int

(7) t 4 = Int -> Int

We already knew that t 3 = Int, but Equation (7) is new. Equations (2) and (7)

imply that

(8) t 1 = Int

(9) t 6 = Int

Together, these equations are sufficient to give a satisfying assignment for all the

variables in the system of equations.
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t 0 = Int -> Int

t 1 = Int

t 2 = Int -> Int -> Int

t 3 = Int

t 4 = Int -> Int

t 6 = Int

This assignment of type expressions to type variables satisfies the constraints (1) to

(4). Hence, the add function is well typed, and the type of the function is Int ->

Int, which is the type expression associated with t 0, the type variable assigned to

the add node.

Example 6.4 A Polymorphic Function Definition
The apply function has a type involving type variables, making the function poly-

morphic.

apply (f, x) = f x

apply :: (t → t1, t) → t1

In this section, we show how the type inference algorithm infers this polymorphic

type. As before, the type-inference algorithm starts with a parse tree for the func-

tion, shown in Figure 6.4. The only new kind of node in this parse tree is the node

labeled Pair, which is the parse tree representation of the pair argument (f,x) to

the function apply. The f and x children of the Pair node are the binding occur-

rences of those variables. Hence, the other occurrences of f and x in the body of

the function point to these binding occurrences with dashed arrows.

apply

f x

Pair

f x

@

Fun

Figure 6.4. Parse tree for apply function

Given a parse tree, the next step of the algorithm is to assign types to each
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node as shown in Figure 6.5.

apply :: t_0

f :: t_1 x :: t_2

Pair :: t_3

f :: t_1 x :: t_2

(@) :: t_6

Fun

Figure 6.5. Parse tree for apply function labeled with type constraints

The second step of the algorithm is to collect a set of constraints by gathering the

constraints generated for each node in the parse tree, following the rules from the

previous section.

apply :: t_0

f :: t_1 x :: t_2

Pair :: t_3
t_3 = (t_1, t_2)

f :: t_1 x :: t_2

(@) :: t_6
t_1 = t_2 -> t_6

Fun
t_0 = t_3 -> t_6

Figure 6.6. Constraints for apply function.

For the application (@) node, we get the constraint that t 1 = t 2 -> t 6 because

t 1, which is the type of the function, must be a function type from t 2, the type

of the argument, to t 6, the type of the application.

For the abstraction (Fun) node, we get the constraint that t 0 = t 3 -> t 6

because t 0, the type of the function, must be a function type from the type of its

argument t 3 to the type of its body t 6.

The Pair node is a new kind of node and thus we need a rule for how to generate

the appropriate constraint.

Pair Expression: The type of a pair expression is a pair of types. The first

of these types is the type of the first component of the pair, while the second

is the type of the second component. In symbols, if (a,b) is a pair and if a

has type t a, b has type t b, and (a,b) has type t p, then these types must

satisfy the constraint t p = (t a, t b).

For the example, we get the constraint t 3 = (t 1, t 2).

Collecting these constraints, we have three constraints to solve:

(1) t 1 = t 2 -> t 6

(2) t 0 = t 3 -> t 6

(3) t 3 = (t 1, t 2)
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The constraints can be solved in order. Using Equation (3), we can substitute

for t 3 in Equation (1), yielding:

(4) t 0 = (t 1, t 2) -> t 6

Next, we can use Equation (1) to substitute for t 1 in Equation (4):

(5) t 0 = (t 2 -> t 6, t 2) -> t 6

Equation (5) tells us the type of the function. If we rewrite (t 2 -> t 6, t 2) ->

t 6 by replacing t 2 with t and t 6 with t1, we get the compiler output (t ->

t1, t) -> t1 previously shown Because there are type variables in the type of the

expression, the function may be applied to arguments with many different types.

The following example illustrates this polymorphism by considering an application

of the apply function.

Example 6.5 Application of a Polymorphic Function
In the last example, we calculated the type of apply to be (t -> t1, t) -> t1,

which is a type that contains type variables. The type variables in this type mean

that apply is a polymorphic function, a function that may be applied to different

types of arguments. In the case of apply, the type (t -> t1, t) -> t1 means

that apply may be applied to a pair of arguments of type (t -> t1, t) for any

types t and t1. In particular, recall that function add x = 2 + x from Example 6.3

has type Int -> Int. Therefore, the pair (add,3) has type (Int -> Int, Int),

which matches the form (t -> t1, t) for function apply. In this example, we

calculate the type of the application

apply(add,3)

Following the steps of the type inference algorithm, we begin by assigning types to

the nodes in the parse tree for the expression:

apply :: t_1

add :: t_2 3 :: t_3

Pair :: t_4

(@) :: t_5

Figure 6.7. Type variable assignment for apply function application parse tree.

Next, we annotate the parse tree with constraints over the type variables.
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apply :: t_1
t_1 = (a_1 -> a_2, a_1) -> a_2

add :: t_2
t_2 = Int -> Int

3 :: t_3
t_3 = Int

Pair :: t_4
t_4 = (t_2, t_3)

(@) :: t_5
t_1 = t_4 -> t_5

Figure 6.8. Constraints for apply function application parse tree.

The constant 3 gives us the constraint that t 3 = Int. We know that the type

of the add function is Int -> Int, which produces the constraint t 2 = Int ->

Int. Similarly, we know that the type of the apply function is (t -> t1, t) ->

t1. Because the type variables t and t1 are variables that can stand for any type,

we need to make sure that the variables t and t1 do not already appear elsewhere

in the type inference problem we are solving. Therefore, we replace t with a fresh

type variable a 1 and t1 with fresh type variable a 2, where “fresh” means the

variable does not appear already in the set of variables we are working with. After

this replacement, we get the constraint t 1 = (a 1 -> a 2, a 1) -> a 2. Finally,

following the rules we saw previously for pair and application nodes, we get the

additional constraints: t 4 = (t 2, t 3) and t 1 = t 4 -> t 5. Collecting all

these constraints together produces the following system of equations:

(1) t 1 = (a 1 -> a 2, a 1) -> a 2

(2) t 2 = Int -> Int

(3) t 3 = Int

(4) t 4 = (t 2, t 3)

(5) t 1 = t 4 -> t 5

Now we must solve the constraints. Combining the first and fifth equations:

(6) (a 1 -> a 2, a 1) -> a 2 = t 4 -> t 5

This constraint has an expression on each side of the equal sign. To solve this

constraint, corresponding parts of each expression must be equal. In other words,

this constraint implies the following two constraints:

(7) (a 1 -> a 2, a 1) = t 4

(8) a 2 = t 5

Equations (4) and (7) yield the following two constraints:

(9) a 1 -> a 2 = t 2

(10) a 1 = t 3

and combining Equations (2) and (9) produces:

(11) a 1 = Int

(12) a 2 = Int

Thus the substitution
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t 1 = (Int -> Int, Int) -> Int

t 2 = Int -> Int

t 3 = Int

t 4 = (Int -> Int, Int)

t 5 = Int

a 1 = Int

a 2 = Int

solves all the constraints.

Because all of the constraints are solved, the expression apply(add,3) is ty-

peable in the Haskell type system. The type of apply(add,3) is the solution for

type variable t 5, namely Int.

We can also apply the function apply to other types of arguments. For example,

if the function not has type Bool -> Bool, then

apply(not, False)

is a well-typed expression with type Bool, which can be calculated by exactly the

same type-inference process as for apply(add,3). This fact illustrates the poly-

morphism of apply: Because the type (t -> t1, t) -> t1 of apply contains

type variables, the function may be applied to any type of arguments that can

be obtained if the type variables in (t -> t1, t) -> t1 are replaced with type

names or type expressions.

Example 6.6 A Recursive Function
When a function is defined recursively, we must determine the type of the function

body without knowing the type of recursive function calls. To see how this works,
consider this simple recursive function that sums the integers up to a given integer.

This function does not terminate, but it does type check:

sum x = x + sum (x-1)

sum :: Int -> Int

Figure 6.9 shows the parse tree of the sum function annotated with type variables

and associated constraints. The recursive call to the sum function appears in the

parse tree as a variable node. Just like any other variable node, this node has a

dotted arrow pointing to the node where the variable is bound. Again just like any

other variable node, the type given to the variable node is the same as the type

given to the binding node; in this case, type t 0. We follow the same procedure as

in the previous examples to generate constraints from the parse tree and to solve

those constraints, producing the following solution:
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sum :: t_0 x :: t_1

(+) :: t_2
t_2 = Int -> Int -> Int

x :: t_1

(@) :: t_4
t_2 = t_1 -> t_4

sum :: t_0

(-) :: t_6
t_6 = Int -> Int -> Int

x :: t_1

(@) :: t_8
t_6 = t_1 -> t_8

1 :: t_9
t_9 = Int

(@) :: t_10
t_8 = t_9 -> t_10

(@) :: t_11
t_0 = t_10 -> t_11

(@) :: t_12
t_4 = t_11 -> t_12

Fun
t_0 = t_1 -> t_12

Figure 6.9. Parse tree for sum function annotated with type variables and associated
constraints.

t 0 = Int -> Int

t 1 = Int

t 2 = Int -> (Int -> Int)

t 4 = Int -> Int

t 6 = Int -> (Int -> Int)

t 8 = Int -> Int

t 9 = Int

t 10 = Int

t 11 = Int

t 12 = Int

Because the constraints can be solved, the function is typeable. In the process of

solving the constraints, we have calculated that the type of sum (the type t 0) is

Int -> Int.

Example 6.7 A Function with Multiple Clauses
Type inference for functions with several clauses may be done by a type check

of each clause separately. Then, because all clauses define the same function, we

impose the constraint that the types of all clauses must be equal. For example,

consider the append function on lists, defined as follows:

append ([], r) = r

append (x:xs, r) = x : append(xs, r)

append :: ([t], [t]) -> [t]

As the type ([t], [t]) -> [t] indicates, append can be applied to any pair of

lists, as long as both lists contain the same type of list elements. Thus, append is a

polymorphic function on lists.
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We begin type inference for append by following the three-step algorithm for

the first clause of the definition, then repeating the steps for the second clause. This

gives us two types:

append :: ([t], t 1) -> t 1

append :: ([t], t 1) -> [t]

Intuitively, the first clause has type ([t], t 1) -> t 1 because the first argu-

ment must match the empty list [], but the second argument may be anything.

The second clause has type ([t], t 1) -> [t] because the return result is a list

containing one element from the list passed as the first argument.

If we require that the two clauses have the same type by imposing the constraint

([t], t 1) -> t 1 = ([t], t 1) -> [t]

then we must have t 1 = [t]. This equality gives us the final type for append:

append :: ([t], [t]) -> [t]

Example 6.8 Type Inference Indicates a Program Error
Here is an example that shows how type inference may produce output that indi-

cates a programming error, even though the program may type correctly. Here is a

sample (incorrect) declaration of a reverse function on lists and its type:

reverse [] = []

reverse (x:xs) = reverse xs

reverse :: [t] -> [t 1]

As the typing shows, this function is typeable; there is no type error in this dec-

laration. However, look carefully at the type of reverse. The type [t] -> [t 1]

means that we can apply reverse to any type of list and obtain any type of list as

a result. However, the type of the “reversed” list is not the same as the type of the

list we started with!

Because it does not make sense for reverse to return a list that is a different

type from its argument, there must be something wrong with this code. The problem

is that, in the second clause, the first element x of the input list is not used as part

of the output. Therefore, reverse always returns the empty list.

As this example illustrates, the type-inference algorithm may sometimes return

a type that is more general than the one we expect. This does not indicate a type

error. In this example, the faulty reverse can be used anywhere that a correct reverse

function could be used. However, the type of reverse is useful because it tells the

programmer that there is an error in the program.
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6.4 POLYMORPHISM

Polymorphism, which literally means “having multiple forms,” refers to constructs

that can take on different types as needed. For example, a function that can compute

the length of any type of list is polymorphic because it has type [t] -> Int for

every type t.

There are three forms of polymorphism in contemporary programming lan-

guages:

� parametric polymorphism, in which a function may be applied to any arguments

whose types match a type expression involving type variables;

� ad hoc polymorphism, another term for overloading, in which two or more im-

plementations with different types are referred to by the same name;

� subtype polymorphism, in which the subtype relation between types allows an

expression to have many possible types.

We discuss parametric polymorphism in this section and ad hoc polymorphism

(overloading) in the next chapter. We consider subtype polymorphism in later chap-

ters in connection with object-oriented programming.

6.4.1 Parametric Polymorphism

The main characteristic of parametric polymorphism is that the set of types associ-

ated with a function or other value is given by a type expression that contains type

variables. For example, a Haskell function that sorts lists might have the Haskell

type

sort :: ((t, t) -> Bool, [t]) -> [t]

In words, sort can be applied to any pair consisting of a function and a list, as long

as the function has a type of the form (t,t) -> Bool, in which the type t must

also be the type of the elements of the list. The function argument is a less-than

operation used to determine the order of elements in the sorted list.

In parametric polymorphism, a function may have infinitely many types, as

there are infinitely many ways of replacing type variables with actual types. The

sort function, for example, may be used to sort lists of integers, lists of lists of

integers, lists of lists of lists of integers, and so on.

Parametric polymorphism may be implicit or explicit. In explicit parametric

polymorphism, the program text contains type variables that determine the way

that a function or other value may be treated polymorphically. In addition, explicit

polymorphism often involves explicit instantiation or type application to indicate

how type variables are replaced with specific types in the use of a polymorphic

value. C++ templates are a well-known example of explicit polymorphism. Haskell

polymorphism is called implicit parametric polymorphism because programs that

declare and use polymorphic functions do not need to contain types – the type-

inference algorithm computes when a function is polymorphic and computes the

instantiation of type variables as needed.
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C++ Function Templates
For many readers, the most familiar type parameterization mechanism is the C++

template mechanism. Although some C++ programmers associate templates with

classes and object-oriented programming, function templates are also useful for

programs that do not declare any classes.

As an illustrative example, suppose we write a simple function to swap the

values of two integer variables:

void swap(int& x, int& y){
int tmp = x; x = y; y = tmp;

}

Although this code is useful for exchanging values of integer variables, the sequence

of instructions also works for other types of variables. If we wish to swap values of

variables of other types, then we can define a function template that uses a type

variable T in place of the type int:

template <typename T>

void swap(T& x, T& y){
T tmp = x; x = y; y = tmp;

}

For those who are not familiar with templates, the main idea is to think of the

type name T as a parameter to a function from types to functions. When applied

to, or instantiated to, a specific type, the result is a version of swap that has int

replaced with another type. In other words, swap is a general function that would

work perfectly well for many types of arguments. Templates allow us to treat swap

as a function with a type argument.

In C++, function templates are instantiated automatically as needed, with the

types of the function arguments used to determine which instantiation is needed.

This is illustrated in the following example lines of code.

int i,j; ... swap(i,j); // replace T with int

float a,b; ... swap(a,b); // replace T with float

String s,t; ... swap(s,t); // replace T with String

Comparison with Haskell Polymorphism
In Haskell polymorphism, the type-inference algorithm infers the type of a function

and the type of a function application (as explained in Section 6.3). When a function

is polymorphic, the actions of the type-inference algorithm can be understood as

automatically inserting “template declarations” and “template instantiation” into

the program. We can see how this works by considering a Haskell sorting function

that is analogous to the C++ sort function previously declared:
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insert (less, x, []) = [x]

insert (less, x, y:ys) = if less(x,y) then x:y:ys

else y:insert(less,x,ys)

sort(less, []) = []

sort(less, x:xs) = insert(less, x, sort(less,xs))

For sort to be polymorphic, a less-than operation must be passed as a function

argument to sort.

The types of insert and sort, as inferred by the type-inference algorithm, are

insert :: ((t, t) -> Bool, t, [t]) -> [t]

sort :: ((t, t) -> Bool, [t]) -> [t]

In these types, the type variable t can be instantiated to any type, as needed.

In effect, the functions are treated as if they were “templates.” If we were able

to combine syntax for C++ templates, Haskell functions, and Haskell types, the

functions previously defined could also be written as

template <type t>

insert(less :: (t, t) -> Bool, x :: t, [] :: [t]) = [x]

insert(less, x, y:ys) = if less(x,y) then x:y:ys

else y:insert(less,x,ys)

template <type t>

sort(less :: (t, t) -> Bool, [] :: [t]) = []

sort(less, x:xs) = insert(less, x, sort(less,xs))

These declarations are the explicitly typed versions of the implicitly polymorphic

Haskell functions. In other words, the Haskell type-inference algorithm may be un-

derstood as a program preprocessor that converts Haskell expressions without type

information into expressions in some explicitly typed intermediate language with

templates. From this point of view, the difference between explicit and implicit poly-

morphism is that a programming language processor (such as the Haskell compiler)

takes the simpler implicit syntax and automatically inserts explicit type informa-

tion, converting from implicit to explicit form, before programs are compiled and

executed.

Finishing this example, suppose we declare a less-than function on integers:

less :: (Int, Int) -> Bool

less(x,y) = x < y

In the following application of the polymorphic sort function, the sort template
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is automatically instantiated to type Int, so sort can be applied to an integer list:

sort (less, [1,4,5,3,2])

[1,2,3,4,5]

it :: [Int]

6.4.2 Implementation of Parametric Polymorphism

C++ templates and Haskell polymorphic functions are implemented differently.

The reason for the difference is not related to the difference between explicitly

polymorphic syntax and implicitly polymorphic syntax. The need for different im-

plementation techniques arises from the difference between data representation in

C and data representation in Haskell.

C++ Implementation
C++ templates are instantiated at link time. More specifically, suppose the swap

function template is stored in one file and a program calling swap is stored in another

file and these files are compiled separately. The so-called relocatable object files

produced by compilation of the calling program will include information indicating

that the compiled code calls a function swap of a certain type. The program linker

combines the two program parts by linking the calls to swap in the one program

part to the definition of swap in the other. It does so by instantiating the compiled

code for swap in a form that produces code appropriate for the calls to swap.

If a program calls swap with several different types, then several different instan-

tiated copies of swap will be produced. One reason that a different copy is needed

for each type of call is that function swap declares a local variable tmp of type T.

Space for tmp must be allocated in the activation record for swap. Therefore the

compiled code for swap must be modified according to the size of a variable of type

T. If T is a structure or object, for example, then the size might be fairly large. On

the other hand, if T is int, the size will be small. In either case, the compiled code

for swap must “know” the size of the datum so that addressing into the activation

record can be done properly.

The linking process for C++ is relatively complex. We will not study it in detail.

However, it is worth noting that if < is an overloaded operator, then the correct

version of < must be identified when the compiled code for sort is linked with a

calling program. For example, consider the following generic sort function:

template <typename T>

void sort( int count, T * A[count] ) {
for (int i=0; i <count-1; i++)

for (int j=i+1; j<count-1; j++)

if (A[j] < A[i]) swap(A[i],A[j]);

}
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If A is an array of type T, then sort(n, A) will work only if operator < is defined

on type T. This requirement of sort is not declared anywhere in the C++ code.

However, when the function template is instantiated, the actual type T must have

an operator < defined or a link-time error will be reported and no executable object

code will be produced.

Haskell Implementation
In Haskell, there is one sequence of compiled instructions for each polymorphic

function. There is no need to produce different copies of the code for different types

of arguments because related types of data are represented in similar ways. More

specifically, pointers are used in parameter passing and in the representation of

data structures such as lists so that when a function is polymorphic, it can access

all necessary data in the same way, regardless of its type. This property of Haskell

is called uniform data representation.

A simple example of uniform data representation is the polymorphic Haskell

pair function:

pair :: t -> t1 -> (t, t1)

pair x y = (x,y)

As the type indicates, this pair function can be applied to any two values. Haskell

represents all values as pointers; therefore, when two values are passed to the pair

function, the pair function receives two pointers. The two pointers are the same

size (typically 32 bits), regardless of what type of value is being passed. In fact, the

compiler can implement the entire computation by only manipulating the pointers,

not the values they point to. As a result, none of the compiled code for pair depends

on the size of the data referred to by arguments x and y.

Uniform data representation has its advantages and disadvantages. Because

there is no need to duplicate code for different argument types, uniform data rep-

resentation leads to smaller code size and avoids complications associated with

C++-style linking. On the other hand, the resulting code can be less efficient, as

uniform data representation often involves using pointers to data instead of storing

data directly in structures.

For polymorphic list functions to work properly, all lists must be represented

in exactly the same way. Because of this uniformity requirement, small values that

would fit directly into the car part of a list cons cell cannot be placed there because

large values do not fit. Hence we must store pointers to small values in lists, just

as we store pointers to large values. Haskell programmers and compiler writers call

the process of making all data look the same by means of pointers boxing.

Comparison
Two important points of comparison are efficiency and reporting of error messages.

As far as efficiency, the C++ implementation requires more effort at link time and

produces a larger code size, as instantiating a template several times will result

in several copies of the code. The Haskell implementation will run more slowly

unless special optimizations are applied; uniform data representation involves more
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extensive use of pointers and these pointers must be stored and followed.

As a general programming principle, it is more convenient to have program

errors reported at compile time than at link time. One reason is that separate

program modules are compiled independently, but are linked together only when

the entire system is assembled. Therefore, compilation is a “local” process that can

be carried out by the designer or implementer of a single component. In contrast,

link-time errors represent global system properties that are not known until the

entire system is assembled. For this reason, C++ link-time errors associated with

operations in templates can be irritating and a source of frustration.

Somewhat better error reporting for C++ templates could be achieved if the

template syntax included a description of the operations needed on type parameters.

However, this is relatively complicated in C++, because of overloading and other

properties of the language. In contrast, Haskell has a more principled overloading

mechanism and includes more information in parameterized constructs, allowing all

type errors to be reported as a program unit is compiled. We will discuss overloading

in more detail in Chapter 7.

6.5 TYPE DECLARATIONS AND TYPE EQUALITY

Many kinds of type declarations and many kinds of type equality have appeared

in programming languages over the years. Type declarations and type equality are

related because when a type name is declared, it is important to decide whether

this is a “new” type that is different from all other types or a new name whose

meaning is equal to some other type that may be used elsewhere in the program.

There are two basic forms of type declaration:

� transparent, meaning an alternative name is given to a type that can also be

expressed without this name,

� opaque, meaning a new type is introduced into the program that is not equal to

any other type.

Two historical names for these two forms of type equality are structural type

equality and name type equality. Intuitively, structural equality means that two

type names are the same if the types they name are the same (i.e., have the same

structure). Name equality means that two type names are considered equal in type

checking only if they are the same name.

Although these terms may seem simple and innocuous, there are lots of confusing

phenomena associated with the use of structural and name type equivalence in

programming languages. Instead of discussing many of the possible forms, we simply

look at a few rational possibilities.

6.5.1 Transparent Type Declarations

In the Haskell form of transparent type declaration,

type <type identifier> = <type expression>
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the identifier becomes a synonym for the type expression. For example, the code

type Celsius = Float

type Fahrenheit = Float

declares two type names, Celsius and Fahrenheit, whose meaning is the type

Float, just the way that the two value declarations

x = 3

y = 3

declare two identifiers whose value is 3. (Remember that Haskell identifiers are not

assignable variables; the identifier x will have value 3 wherever it is used.) If we

declare a Haskell function to convert from Fahrenheit to Celsius, this function will

have type Float -> Float (if we ignore operator overloading):

toCelsius x = ((x-32.0)* 0.555556)

This fact should not be surprising because there is no indication that the function

argument or return value has any type other than Float. However, because types

Celsius and Fahrenheit are both equal to type Float, the function toCelsius

also has type Fahrenheit -> Celsius. The programmer can indicate this fact by

specifying the type of the argument and result:

toCelsius :: Fahrenheit -> Celsius

toCelsius x = ((x-32.0)* 0.555556)

This version of the toCelsius function is more informative to read, as the types

indicate the intended purpose of the function. However, because Fahrenheit and

Celsius are synonyms for Float, this function can be applied to any Float argu-

ment:

toCelsius 74.5

23.61113

it :: Celsius

The Haskell type checker gives the result type Celsius, but because Celsius =

Float, the result can be used in Float expressions.

In addition to transparent type declarations, Haskell also supports opaque type

declarations. We will discuss one such example in Subsection 6.5.3.
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6.5.2 C Declarations and Structs

The basic type declaration construct in C is typedef. Here are some simple exam-

ples:

typedef char byte;

typedef byte ten bytes[10];

the first declaring a type byte that is equal to char and the second an array type

ten bytes that is equal to arrays of 10 bytes. Generally speaking, the C typedef

construct works similarly to the transparent Haskell type declaration discussed in

the preceding subsection. However, when structs are involved, the C type checker

considers separately declared type names to be unequal, even if they are declared

to name the same struct type. Here is a short program example illustrating this

behavior:

typedef struct {int m;} A;

typedef struct {int m;} B;

A x;

B y;

x=y; /* incompatible types in assignment */

Here, although the two struct types used in the two declarations are the same,

the C type checker does not treat A and B as equal types. However, if we replace

the two declarations with typedef int A; typedef int B;, using int in place of

structs, then the assignment is considered type correct.

6.5.3 Haskell Data-Type Declarations

The Haskell data-type declaration, discussed in Section 5.4, is a form of type dec-

laration that simultaneously defines a new type name and operations for building

and making use of elements of the type. Because all of the examples in Section

5.4 were monomorphic, we take a quick look at a polymorphic declaration before

discussing type equality.

Here is an example of a polymorphic data type of trees. You may wish to

compare this with the monomorphic (nonpolymorphic) example in Subsection 5.4:

data Tree a = Leaf a | Node (Tree a, Tree a)

This declaration defines a polymorphic type Tree a, with instances Tree Int, Tree

String, and so on, together with polymorphic constructors Leaf and Node:

Leaf :: a -> Tree a
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Node :: (Tree a , Tree a) -> Tree a

The following function checks to see if an element appears in a tree.

inTree :: (Eq t) => (t, Tree t) -> Bool

inTree (x, Leaf y) = x == y

inTree (x, Node(left,right)) =

inTree (x, left) || inTree(x, right)

The type indicates that inTree will work for any type t that belongs to the Eq

type class, meaning the type t must have an equality operator defined for it. This

qualification on the type of t enables us to compare x and y for equality in the

first clause of the function. We will study type classes in more detail in the next

chapter.

Each Haskell data-type declaration is considered to define a new type different

from all other types. Even if two data types have the same structure, they are not

considered equivalent.

The design of Haskell makes it hard to declare similar data types, as each con-

structor has only one type. For example, the two declarations

data A = C Int

data B = C Int

declare distinct types A and B. Both declarations introduce a constructor function

named C, the first with type Int -> A and the second with type Int -> B. Because

both constructors are in the same scope, the Haskell compiler reports an error,

saying that the constructor C has been defined more than once. We can solve this

problem by putting the two declarations into two different modules, M1 and M2. We

can then see that M1.A and M2.B are considered different by writing a function that

attempts to treat a value of one type as the other,

f :: M1.A -> M2.B

f x = x

which leads to the message: Couldn’t match expected type ‘M1.B’ against

inferred type ‘M2.A’.

6.6 CHAPTER SUMMARY

In this chapter, we studied reasons for using types in programming languages,

methods for type checking, and some typing issues such as polymorphism and type

equality.
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Reasons for Using Types
There are three main uses of types in programming languages:

� Naming and organizing concepts: Functions and data structures can be given

types that reflect the way these computational constructs are used in a program.

This helps the programmers and anyone else reading a program figure out how

the program works and why it is written a certain way.

� Making sure that bit sequences in computer memory are interpreted consistently:

Type checking keeps operations from being applied to operands in incorrect

ways. This prevents a floating-point operation from being applied to a sequence

of bits that represents a string, for example.

� Providing information to the compiler about data manipulated by the program:

In languages in which the compiler can determine the type of a data structure,

for example, the type information can be used to determine the relative location

of a part of this structure. This compile-time type information can be used to

generate efficient code for indexing into the data structure at run time.

Type Inference
Type inference is the process of determining the types of expressions based on the

known types of some of the symbols that appear in them. For example, we saw how

to infer that the function g declared by

g x = 2 + x

has type Int -> Int. The difference between type inference and compile-time type

checking is a matter of degree. A type-checking algorithm goes through the pro-

gram to check that the types declared by the programmer agree with the language

requirements. In type inference, the idea is that some information is not specified

and some form of logical inference is required for determining the types of identifiers

from the way they are used.

The following steps are used to infer the type of an expression e:

1. Assign a type variable to e and each subexpression. Each such variable rep-

resents the unknown type of the corresponding expression.

2. Generate a set of constraints on these type variables from the form of the

parse tree of the expression.

3. Solve these constraints by using unification, which is a substitution-based

algorithm for solving systems of equations.

In a series of examples, we saw how to apply this algorithm to a variety of ex-

pressions. Type inference has many characteristics in common with the kind of

algorithms that are used in compilers and programming environments to determine

properties of programs. For example, some useful alias analysis algorithms that try

to determine whether two pointers might point to the same location have the same

general outline as that of type inference.
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Parametric Polymorphism
There are three forms of polymorphism, which literally means “many shapes”:

parametric polymorphism, ad hoc polymorphism (another term for overloading),

and subtype polymorphism. We studied the first of these in this chapter. We will

examine ad hoc polymorphism in the next chapter and subtype polymorphism in

later chapters on object-oriented languages. Parametric polymorphism can be either

implicit, as in Haskell, or explicit, as with C++ templates. There are two ways of

implementing parametric polymorphism, one in which the same data representation

is used for all types of data and one in which different data representations are are

used for different types of data. In this second approach, the parametric code is

instantiated (ie, slightly different versions of the code are used) to manage different

data representations.

Type Declarations and Type Equality
We discussed opaque and transparent type declarations. In opaque type declara-

tions, the type name stands for a distinct type different from all other types. In

transparent type declarations, the declared name is a synonym for another type.

Both forms are used in many programming languages.

EXERCISES

6.1 Haskell Types

Assuming that integer literals have type Int and binary arithmetic operators + and

* have type Int -> Int -> Int, explain the uHaskell type for each of the following

declarations:

(a) a (x,y) = x + 2 * y

(b) b (x,y,f) = if f y then x else y

(c) c f = \y -> f y

(d) d (f,x) = f(f x)

Because you can simply type these expressions into a Haskell interpreter to determine

the type, be sure to write a short explanation to show that you understand why each

function has the type you give.

6.2 Polymorphic Sorting

This function performing insertion sort on a list takes as arguments a comparison

function less and a list l of elements to be sorted. The code compiles and runs

correctly:

sort (less, []) = []

sort (less, a : l) =

let insert(a, []) = a : []

insert(a, b:l) = if less(a,b) then a : b : l

else b : insert (a,l)

in insert(a, sort(less, l))

What is the type of this sort function? Explain briefly, including the type of the

subsidiary function insert. You do not have to run the Haskell algorithm on this

code; just explain why an ordinary Haskell programmer would expect the code to

have this type.
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6.3 Types and Garbage Collection

Language D allows a form of “cast” in which an expression of one type can be treated

as an expression of any other. For example, if x is a variable of type integer, then

(string)x is an expression of type string. No conversion is done. Explain how this

might affect garbage collection for language D.

For simplicity, assume that D is a conventional imperative language with integers,

reals (floating-point numbers), pairs, and pointers. You do not need to consider other

language features.

6.4 Polymorphic Fixed Point

A fixed point of a function f is some value x such that x D f(x). There is a connection

between recursion and fixed points that is illustrated by this Haskell definition of the

factorial function factorial :: Integer -> Integer:

y f x = f (y f) x

g f x = if x == 0 then 1 else x*f(x-1)

factorial = y g

The first function, y, is a fixed-point operator. The second function, g, is a function on

functions whose fixed point is factorial. Both of these are curried functions; using

the Haskell syntax \x -> . . . for λx . . . , we could also write the function g

as

g f = \x ->

if x == 0 then 1 else x*f(x-1)

This g is a function that, when applied to argument f, returns a function that, when

applied to argument x, has the value given by the expression if x == 0 then 1

else x*f(x-1).

(a) What type will the Haskell compiler deduce for g?

(b) What type will the Haskell compiler deduce for y?

Explain your answers in a few sentences.

6.5 Type Inference 1

Use the parse graph in Figure 6.11 to calculate the uHaskell type for the function

f(g,h) = g(h) + 2

Assume that 2 has type Integer and + has type Integer -> Integer -> Integer.

6.6 Type Inference 2

Use the following parse graph to follow the steps of the Haskell type-inference algo-

rithm on the function declaration

f g = (g g) + 2

Assume that 2 has type Integer and + has type Integer -> Integer -> Integer.

What is the output of the type checker?

6.7 Type Inference and Bugs

What is the type of the following Haskell function?

append([], l) = l

append(x:l, m) = append(l, m)
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Figure 6.10. Parse tree for problem 6.5.

Write one or two sentences to explain succinctly and informally why append has the

type you give. This function is intended to append one list onto another. However,

it has a bug. How might knowing the type of this function help the programmer to

find the bug?

6.8 Type Inference and Debugging

The reduce function takes a binary operation, in the form of a function f, and a

list, and produces the result of combining all elements in the list by using the binary

operation. For example;

reduce plus [1,2,3] = 1 + 2 + 3 = 6

if plus is defined by

plus(x,y::Int) = x + y

A friend of yours is trying to learn Haskell and tries to write a reduce function. Here

is his incorrect definition:

reduce(f, x) = x

reduce(f, (x : y)) = f(x, reduce(f, y))
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Figure 6.11. Parse tree for problem 6.6.

He tells you that he does not know what to return for an empty list, but this should

work for a nonempty list: If the list has one element, then the first clause returns it.

If the list has more than one element, then the second clause of the definition uses

the function f. This sounds like a reasonable explanation, but the type checker gives

you the following output:

reduce :: ((t, [t]) -> [t], [t]) -> [t]

How can you use this type to explain to your friend that his code is wrong?

6.9 Polymorphism in C

In the following C min function, the type void is used in the types of two arguments.
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However, the function makes sense and can be applied to a list of arguments in which

void has been replaced with another type. In other words, although the C type of

this function is not polymorphic, the function could be given a polymorphic type if

C had a polymorphic type system. Using Haskell notation for types, write a type for

this min function that captures the way that min could be meaningfully applied to

arguments of various types. Explain why you believe the function has the type you

have written.

int min (

void *a[ ], /* a is an array of pointers to data of

unknown type */

int n, /* n is the length of the array */

int (*less)(void*, void*) /* parameter less is a pointer to

function */

) /* that is used to compare array

elements */

{
int i;

int m;

m=0;

for (i=1; i < n; i++)

if (less(a[i], a[m])) m=i;

return(m);

}

6.10 Typing and Run-Time Behavior

The following Haskell functions have essentially identical computational behavior,

f x = not (f x)

g y = (g y) * 2

because except for typing differences, we could replace one function with the other

in any program without changing the observable behavior of the program. In more

detail, suppose we turn off the Haskell type checker and compile a program of the

form P[f x = not (f x)]. Whatever this program does, the program P[g y = (g

y) * 2] we obtain by replacing one function definition with the other will do exactly

the same thing. In particular, if the first does not lead to a run-time type error such

as adding an integer to a string, neither will the second.

(a) What is the Haskell type for f?

(b) What is the Haskell type for g? (Assume that 2 has type Integer and + has

type Integer -> Integer -> Integer).

(c) Give an informal explanation of why these two functions have the same run-time

behavior.

(d) Because the two functions are equivalent, it might be better to give them the

same type. Why do you think the designers of the Haskell typing algorithm did

not work harder to make it do this? Do you think they made a mistake?

6.11 Dynamic Typing in Haskell

Many programmers believe that a run-time typed programming language like Lisp

or Scheme is more expressive than a compile-time typed language like Haskell, as
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there is no type system to “get in your way.” Although there are some situations in

which the flexibility of Lisp or Scheme is a tremendous advantage, we can also make

the opposite argument. Specifically, Haskell is more expressive than Lisp or Scheme

because we can define an Haskell data type for Lisp or Scheme expressions.

Here is a type declaration for pure historical Lisp:

data LISP = Nil

| Symbol String

| Number Int

| Cons (LISP, LISP)

| Function (LISP -> LISP)

Although we could have used (Symbol ‘‘nil’’) instead of a primitive Nil, it seems

convenient to treat Nil separately.

(a) Write a Haskell declaration for the Lisp function atom that tests whether its

argument is an atom. (Everything except a cons cell is an atom – The word

atom comes from the Greek word atomos, meaning indivisible. In Lisp, sym-

bols, numbers, nil, and functions cannot be divided into smaller pieces, so they

are considered to be atoms.) Your function should have type LISP -> LISP,

returning atoms Symbol(‘‘T’’) or Nil.

(b) Write a Haskell declaration for the Lisp function islist that tests whether

its argument is a proper list. A proper list is either Nil or a cons cell whose

cdr is a proper list. Note that not all list-like structures built from cons

cells are proper lists. For instance, (Cons (Symbol(‘‘A’’), Symbol(‘‘B’’)))

is not a proper list (it is instead what is known as a dotted list), and so

(islist (Cons (Symbol(‘‘A’’), Symbol(‘‘B’’)))) should evaluate to Nil.

On the other hand, (Cons (Symbol(‘‘A’’), (Cons (Symbol(‘‘B’’), Nil))))

is a proper list, and so your function should evaluate to Symbol(‘‘T’’). Your

function should have type LISP -> LISP, as before.

(c) Write a Haskell declaration for the Lisp car function and explain briefly. The

function should have type LISP -> LISP.

(d) Write the Lisp expression (lambda (x) (cons x ’A)) as a Haskell expression

of type LISP -> LISP. Explain briefly.


