Lecture 9: More Lambda Calculus / Types

CSC 131 Spring, 2019

Kim Bruce

Pure Lambda Calculus

- Terms of pure lambda calculus
 - $M ::= v \mid (M M) \mid \lambda v. M$
 - Impure versions add constants, but not necessary!
 - Turing-complete
- Left associative: M N P = (M N) P.
- Computation based on substituting actual parameter for formal parameters

Computation Rules

Reduction rules for lambda calculus:
(α) λx. M → λy. ([y/x] M), if y ∉ FV(M). change name of parameters if new not capture old
(β) (λx. M) N → [N/x] M. computation by subst function argument for formal parameter

 $(\eta) \lambda x. (M x) \rightarrow M.$

Optional rule to get rid of excess λ 's

Computability

- Can encode all computable functions in pure untyped lambda calculus.
 - -<u>true</u> = λ u. λ v. u
 - <u>true</u> a b = a
 - $\underline{false} = \lambda u. \lambda v. v$
 - <u>false</u> a b = b
 - <u>cond</u> = λ u. λ v. λ w. u v w
 - <u>cond true</u> a b = ? <u>cond false</u> a b = ?

Encoding Natural Numbers

- Natural numbers:
 - $\underline{o} = \lambda s. \lambda z. z.$
 - $-\underline{\mathbf{I}} = \lambda \mathbf{S}. \ \lambda \mathbf{Z}. \ \mathbf{S} \mathbf{Z}.$
 - $\underline{2} = \lambda s. \lambda z. s (s z).$
- Integers encode repetition:
 - $\underline{2} f x = f (f x)$
 - -3 f x = f(f(f x))
 - $\underline{n} f x = f^{(n)} (x)$

Arithmetic

- $\underline{Succ} = \lambda n. \lambda s. \lambda z. s (n s z)$
 - Succ $\underline{n} = \lambda s. \lambda z. s (\underline{n} s z) = \lambda s. \lambda z. s (s^{(n)} z) = \underline{n+1}$
- <u>Plus</u> = λ n. λ m. λ s. λ z. m s (n s z).
- <u>Mult</u> = λ n. λ m. (m (<u>Plus</u> n) <u>o</u>).
- <u>isZero</u> = λ n. n (λ x. <u>false</u>) <u>true</u>
- Subtraction is hard!!

Recursion

- A different perspective: Start with
 - fact = λn . cond (isZero n) I (Mult n (fact (Pred n)))
- Let F stand for the closed term:
 - $\lambda f. \lambda n. \text{ cond (isZero n) 1 (Mult n (f (Pred n)))}$
 - Notice F(fact) = fact.
 - fact is a fixed point of F
 - To find fact, need only find fixed point of F!
- Easy w/ g(x) = x * x, but F????

Fixed Points

• Several fixed point operators: - Ex: $Y = \lambda f \cdot (\lambda x \cdot f(xx))(\lambda x \cdot f(xx))$ • Claim for all g, $\underline{Y}g = g(\underline{Y}g)$ $\underline{\mathbf{Y}} \mathbf{g} = (\lambda \mathbf{f} \cdot (\lambda \mathbf{x} \cdot \mathbf{f} (\mathbf{x} \mathbf{x}))(\lambda \mathbf{x} \cdot \mathbf{f} (\mathbf{x} \mathbf{x}))) \mathbf{g}$ $= (\lambda x. g(xx))(\lambda x. g(xx))$ $= g((\lambda x. g(xx)) (\lambda x. g(xx)))$ $= g(\underline{Y}g)$

• If let $x_o = \underline{Y} g$, then $g(x_o) = x_o$.

Invented by Haskell Curry

Lambda Calculus

- λ-calculus invented in 1928 by Church in Princeton & first published in 1932.
- Goal to provide a foundation for logic
- First to state explicit conversion rules.
- Original version inconsistent, but corrected
 - "If this sentence is true then I = 2" *problematic*!!
- 1933, definition of natural numbers

Collaborators

- 1931-1934: Grad students:
 - J. Barkley Rosser and Stephen Kleene
 - Church-Rosser confluence theorem ensured consistency (earlier version inconsistent)
 - Kleene showed λ -definable functions very rich
 - Equivalent to Herbrand-Gödel recursive functions
 - Equivalent to Turing-computable functions.
 - Founder of recursion theory, invented regular expressions

Church's thesis:

- λ -definability = effectively computable

Undecidability

- Convertibility problem for λ-calculus undecidable.
- Validity in first-order predicate logic undecidable.
- Proved independently year later by Turing.
 - First showed halting problem undecidable

Alan Turing

• Turing

- 1936, in Cambridge, England, definition of Turing machine
- 1936-38, in Princeton to get Ph.D. under Church.
- 1937, first published fixed point combinator
 - (λx. λy. (y (x x y))) (λx. λy. (y (x x y)))
- Kleene did not use fixed-point operator in defining functions on natural numbers!
- Broke German enigma code in WW2, Turing test AI
- Persecuted as homosexual, committed suicide in 1954

Typed Lambda Calculus

Types

- Can specify types of identifiers
- Start with base type e and build up types and terms:
 - Type ::= $e \mid Type \rightarrow Type$
 - M ::= v | (M M) | λv : Type. M
- Examples:
 - Types: e, e \rightarrow e, e \rightarrow e \rightarrow e, (e \rightarrow e) \rightarrow e, ...
 - Terms: λx : e. x, λf : e \rightarrow e. λz : e. f(f(z))

Definitions

- Earlier definitions generalize over types t:
 - true^t = λx :t. λy :u. x
 - $\underline{\mathbf{n}^{t}} = \lambda \mathbf{s}: \mathbf{t} \rightarrow \mathbf{t}. \ \lambda \mathbf{z}: \mathbf{t}. \ \mathbf{s}^{(n)}(\mathbf{z})$
- Some untyped terms can't be typed:
 - $\Omega = (\lambda x. (x x))(\lambda x. (x x))$
 - $Y = \lambda f \cdot (\lambda x \cdot f \cdot (x \cdot x))(\lambda x \cdot f \cdot (x \cdot x))$

Totally Awesome!!

- <u>Theorem</u>: If M is a term of the typed lambda calculus, then M has a unique normal form. *I.e., every term of the typed lambda calculus is total.*
- <u>Corollary</u>: The typed lambda calculus does *not* include all computable functions.

Why (Static) Types?

- Increase readability, esp. for libraries
- Hide representation
- Detection of errors.
- Help disambiguate operators
- Compiler optimization. E.g. know where fields of record/struct are.
- Help ensure different components in separately compiled units will interoperate properly
- Provide basis for code completion in editors

Types & Constructors

- Built-in types primitive types (incl. size)
- Aggregate types records/structs
- Mapping types arrays/functions
- Recursive types lists/trees
- Sequence types files and strings (primitive?)
- User-defined types

Aggregate Types

- Cartesian products (tuples)
- Records / Structs
- Union Types
 - C: typedef union {int i; float r;} utype
 - unsafe
 - Discriminated union safer
 - Haskell type defs safe

Discriminated Union: Ada

ob1 : geometric -- default is Square ob2 : geometric(Triangle) -- frozen, can't be changed

Mappings

• Arrays

- Static location & size frozen at compile time (FORTRAN)
- Semi-static size bound at compile time, location at invocation (Pascal, C)
- Dynamic size and location bound at creation (ALGOL 60, Ada, Java)
- Flex size and location can be changed any time (Java vectors)
- Function Types update less efficient
 - update f arg nuVal = fn x => if x = arg then nuVal else f x

Recursive Types

- In Haskell: data List = Nil | Cons (Integer, List)
- In C: struct list { int x; list *next; };
- Solutions to: list = $\{ Nil \} \cup (int \times list)$
 - 1. finite seqs of ints followed by Nil: e.g., (2,(5,Nil))
 - 2. finite or infinite seqs: if finite then end w/ Nil
- Recursive eqn's always have a least solution
 least fixed point!

Least Recursive Solutions

$$\begin{split} list_0 &= \{Nil\}\\ list_1 &= \{Nil\} \cup (int \times list_0)\\ &= \{Nil\} \cup \{(n, Nil) | n \in int\}\\ list_2 &= \{Nil\} \cup (int \times list_1)\\ &= \{Nil\} \cup \{(n, Nil) | n \in int\} \cup \{(m, (n, Nil)) | m, n \in int\}\\ & \cdots\\ list &= \bigcup_n list_n \end{split}$$

Some solutions inconsistent w/classical math!

User-Defined Types

- Named types
 - More readable
 - Easy to modify if localized
 - Factorization (why repeat same def?)
 - Added consistency checking if generative
- Enumeration types added to Java 5

What does it mean for a language to be type-safe?

Safe Languages

Two kinds of execution errors

- Trapped errors: cause computation to halt immediately.
 - Divide by zero, null pointer exception
- Untrapped errors: go unnoticed and later cause problems.
 - Access an illegal address, e.g., array bounds error.
- Program fragment is *safe* if it causes no untrapped errors.
 - Language is safe if all program fragments are safe.

See "Type Systems" by Luca Cardelli http://lucacardelli.name/Papers/TypeSystems%201st%20Edition.US.pdf

Strongly Typed Languages

• Language designates forbidden errors

- those that are not allowed to happen.

- should include all untrapped errors
- Program fragment is *well behaved* if it generates no forbidden errors.
- Language where all legal programs are well behaved is *strongly typed*

Static vs. Dynamic Typing

- Most use static typing
 - including C/Java/ML/Haskell
 - binding of types to variables done at translation time.
 - Find errors earlier, but conservative.
- dynamic typing
 - LISP/Scheme/Racket/Python/Javascript/Grace
 - binding of type to value, not variable.
 - thus binding of type to variable changes dynamically
 - Dynamic more flexible, but more overhead.

(Static) Type Checking

Static Type Checking

- Static type-checkers for strongly-typed languages (i.e., rule out all "bad" programs) must be conservative:
 - Rule out some programs without errors.
- if (program-that-could-run-forever) {
 expression-w-type-error;
 } else {

expression-w-type-error;

}