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Pure Lambda Calculus

• Terms of pure lambda calculus

- M ::= v | (M M) | λv. M

- Impure versions add constants, but not necessary!

- Turing-complete

• Left associative:  M N P = (M N) P.

• Computation based on substituting actual 
parameter for formal parameters



Computation Rules

• Reduction rules for lambda calculus:
    (α) λx. M  → λy. ([y/x] M), if y ̸∉ FV(M).

change name of parameters if new not capture old

    (β) (λx. M) N → [N/x] M. 
computation by subst function argument for formal parameter

    (η) λx. (M x)  → M.     

Optional rule to get rid of excess λ’s



Computability

• Can encode all computable functions in pure 
untyped lambda calculus.
- true = λ u. λ v. u 

• true a b = a

- false = λ u. λ v. v

• false a b = b

- cond = λ u. λ v. λ w. u v w

• cond true a b = ?             cond false a b = ?



Encoding Natural Numbers

• Natural numbers:
- 0 = λ s. λ z. z. 

- 1 = λ s. λ z. s z. 

- 2 = λ s. λ z. s (s z). 

• Integers encode repetition:
- 2 f x = f (f x)

- 3 f x = f( f (f x))

- n f x = f(n) (x)



Arithmetic

• Succ = λ n. λ s. λ z. s (n s z)
- Succ n = λ s. λ z. s (n s z) = λ s. λ z. s (s(n) z) = n+1

• Plus = λ n. λ m. λ s. λ z. m s (n s z). 

• Mult = λ n. λ m. (m ( Plus n) 0). 

• isZero = λ n. n (λ x. false) true

• Subtraction is hard!!



Recursion

• A different perspective:  Start with
- fact = λn. cond (isZero n) 1 (Mult n (fact (Pred n)))

• Let F stand for the closed term:

- λf. λn. cond (isZero n) 1 (Mult n (f (Pred n)))

- Notice F(fact) = fact.

- fact is a fixed point of F

- To find fact, need only find fixed point of F!

• Easy w/ g(x) = x * x, but F????



Fixed Points

• Several fixed point operators:
- Ex:  Y = λf . (λx. f (xx))(λx. f (xx)) 

• Claim for all g,   Y g = g (Y g)
Y g = (λf . (λx. f (xx))(λx. f (xx))) g 

       = (λx. g(xx))(λx. g(xx)) 

       = g((λx. g(xx)) (λx. g(xx))) 

       = g (Y g)

• If let x0 = Y g, then g (x0) = x0.

Invented by Haskell  
 Curry



Lambda Calculus

• λ-calculus invented in 1928 by Church in 
Princeton & first published in 1932.

• Goal to provide a foundation for logic

• First to state explicit conversion rules.

• Original version inconsistent, but corrected
- “If this sentence is true then 1 = 2” problematic!!

• 1933, definition of natural numbers



Collaborators
• 1931-1934: Grad students:  
- J. Barkley Rosser and Stephen Kleene

- Church-Rosser confluence theorem ensured 
consistency (earlier version inconsistent)

- Kleene showed λ-definable functions very rich

• Equivalent to Herbrand-Gödel recursive functions

• Equivalent to Turing-computable functions.

• Founder of recursion theory, invented regular expressions

• Church’s thesis: 
- λ-definability ≡ effectively computable

O



Undecidability

• Convertibility problem for λ-calculus 
undecidable.

• Validity in first-order predicate logic 
undecidable.

• Proved independently year later by Turing.
- First showed halting problem undecidable



Alan Turing
• Turing
- 1936, in Cambridge, England, definition of Turing 

machine

- 1936-38, in Princeton to get Ph.D. under Church.

- 1937, first published fixed point combinator

• (λx. λy. (y (x x y))) (λx. λy. (y (x x y)))

- Kleene did not use fixed-point operator in defining functions 
on natural numbers!

- Broke German enigma code in WW2, Turing test AI

- Persecuted as homosexual, committed suicide in 1954



Typed Lambda Calculus



Types

• Can specify types of identifiers

• Start with base type e and build up types and 
terms:
- Type ::= e | Type → Type

- M ::= v | (M M) | λv : Type. M

• Examples:
- Types: e, e → e, e → e → e, (e → e) → e, ...

- Terms:  λx: e. x,    λf: e → e. λz: e. f(f(z))



Definitions

• Earlier definitions generalize over types t:

- truet = λx:t. λy:u. x

- nt = λs: t→t. λz: t. s(n)(z)

• Some untyped terms can’t be typed:
- Ω = (λx. (x x))(λx. (x x))

- Y = λf . (λx. f (x x))(λx. f (x x))



Totally Awesome!!

• Theorem:  If M is a term of the typed lambda 
calculus, then M has a unique normal form.  
I.e., every term of the typed lambda calculus is total.

• Corollary:  The typed lambda calculus does not 
include all computable functions.



Types



Why (Static) Types?
• Increase readability, esp. for libraries

• Hide representation

• Detection of errors.

• Help disambiguate operators

• Compiler optimization.  E.g. know where fields of 
record/struct are. 

• Help ensure different components in separately 
compiled units will interoperate properly

• Provide basis for code completion in editors



Types & Constructors

• Built-in types - primitive types (incl. size)

• Aggregate types - records/structs

• Mapping types - arrays/functions

• Recursive types - lists/trees

• Sequence types - files and strings (primitive?)

• User-defined types



Aggregate Types

• Cartesian products (tuples)

• Records / Structs

• Union Types
- C: typedef union {int i; float r;} utype

- unsafe

- Discriminated union safer

- Haskell type defs safe



Discriminated Union: Ada
type geometric (Kind: (Triangle, Square) := Square) is
    record
       color : ColorType := Red ;
       case Kind of
          when Triangle =>
                 pt1,pt2,pt3:Point;
          when Square =>
                 upperleft : Point;
                 length : INTEGER range 1..100;
       end case;
    end record;

ob1 : geometric -- default is Square
ob2 : geometric(Triangle) -- frozen, can't be changed

Kind is tag



Mappings
• Arrays
- Static - location & size frozen at compile time (FORTRAN)

- Semi-static - size bound at compile time, location at invocation 
(Pascal, C)

- Dynamic - size and location bound at creation (ALGOL 60, Ada, 
Java)

- Flex - size and location can be changed any time (Java vectors) 

• Function Types - update less efficient
- update f arg nuVal = fn x => if x = arg then nuVal else f x



Recursive Types

• In Haskell:  data List = Nil | Cons (Integer, List)

• In C: struct list { int x; list *next; };

• Solutions to: list = { Nil } ∪ (int × list)
1.  finite seqs of ints followed by Nil:  e.g., (2,(5,Nil))

2.  finite or infinite seqs: if finite then end w/ Nil

•  Recursive eqn’s always have a least solution
- least fixed point!



Least Recursive Solutions

list0 = {Nil}
list1 = {Nil} ∪ (int × list0)

= {Nil} ∪ {(n, Nil)|n ∈ int}
list2 = {Nil} ∪ (int × list1)

= {Nil} ∪ {(n, Nil)|n ∈ int} ∪ {(m, (n, Nil))|m, n ∈ int}
...

list =
⋃

n
listn

Some solutions inconsistent w/classical math!



User-Defined Types

• Named types
- More readable

- Easy to modify if localized

- Factorization (why repeat same def?)

- Added consistency checking if generative

• Enumeration types added to Java 5



What does it mean for a 
language to be type-safe?



Safe Languages

• Two kinds of execution errors
- Trapped errors: cause computation to halt immediately.

• Divide by zero, null pointer exception

- Untrapped errors: go unnoticed and later cause problems.
• Access an illegal address, e.g., array bounds error.

• Program fragment is safe if it causes no untrapped 
errors.
- Language is safe if all program fragments are safe.

See “Type Systems” by Luca Cardelli
http://lucacardelli.name/Papers/TypeSystems%201st%20Edition.US.pdf



Strongly Typed Languages

• Language designates forbidden errors 
- those that are not allowed to happen.

- should include all untrapped errors

• Program fragment is well behaved if it generates 
no forbidden errors.

• Language where all legal programs are well 
behaved is strongly typed



Static vs. Dynamic Typing
• Most use static typing 
- including C/Java/ML/Haskell

- binding of types to variables done at translation time.

- Find errors earlier, but conservative.

• dynamic typing
- LISP/Scheme/Racket/Python/Javascript/Grace 

- binding  of type to value, not variable.
• thus binding of type to variable changes dynamically

- Dynamic more flexible, but more overhead.



(Static) Type Checking



Static Type Checking

• Static type-checkers for strongly-typed 
languages (i.e., rule out all “bad” programs) 
must be conservative:
- Rule out some programs without errors.

• if (program-that-could-run-forever) { 
     expression-w-type-error;  
} else { 
    expression-w-type-error;  
}


