Lecture 9: More Lambda
Calculus / Types

(BSC 131
Spring, 2019

Kim Bruce

Pure LLambda Calculus

e Terms of pure lambda calculus
-M:=vI(MM)I|iv. M
- Impure versions add constants, but not necessary!

- Turing-complete
o [eft associative: MNP=(M N) P

e Computation based on substituting actual
parameter for formal parameters

Computation Rules

e Reduction rules for lambda calculus:

(@) dx. M — Ay: Qy/x] M, if y & EVQWD.

change name of parameters if new not capture old

B) (x. M) N — {N/x} M.

computation by subst function argument for formal parameter
() A=x. M x) — M.

Optional rule to get rid of excess \’s

Computability

e Can encode all computable functions in pure
untyped lambda calculus.

- true=Au. Av.u
e trueab=a

- false=Au. Av.v

e falseab=>b

-cond=Au. AVvAWuvw

e condtrueab=" cond false ab =7

Encoding Natural Numbers

e Natural numbers:
- 0=AS. Az z

- 1=AS.AhZ. s Z

- 2=MAs.hzs(s2).

* Integers encode repetition:
- 2fx=f(fx
- 3fx=f(f(fx)
- nfx=fx

Arithmetic

® Succ=An.As.Az.s(nsz

- Succn=As.Az.s(nsz)=As.\Az s (s®z)=n+1
* Plus=An.Am.As.Az. ms(nsz).
® Mult = A n. A m. (m (Plus n) o).

e isZero = A n. n (A x. false) true

e Subtraction is hard!

Recursion

o A different perspective: Start with
- fact = An. cond (isZero n) 1 (Mult n (fact (Pred n)))

e [et F stand for the closed term:
- Af. An. cond (isZero n) 1 (Mult n (f (Pred n)))
- Notice F(fact) = fact.
- fact is a fixed point of F
- To find fact, need only find fixed point of F!

e Easy w/ g(x) = x * x, but F????

Fixed Points

e Several fixed point operators:

L Ex: Y =M Ox £ 6x)0x. £ (xx) Invented by Haskell

Curry
e Claim for all g
Y g= (Af. Ox. f (xx) (Xx f (XX))) g

= (Ax. g(xx))(hx. (XX))

= o((\x. 1}57»}(g(xx)))

-g(Y g

[.ambda Calculus

e A-calculus invented in 1928 by Church in
Princeton & first published in 1932.

e (Goal to provide a foundation for logic
 First to state explicit conversion rules.

* Original version inconsistent, but corrected

- “If this sentence is true then 1 = 2” problematic!!

® 1933, definition of natural numbers

Collaborators

__* 193171934: Grad students:

- J. Barkley Rosser and Stephen Kleene

— Church-Rosser confluence theorem ensured
consistency (earlier version inconsistent)

- Kleene showed A-definable functions very rich

» Equivalent to Herbrand-Gddel recursive functions
e Equivalent to Turing-computable functions.

e Founder of recursion theory, invented regular expressions

e Church’s thesis:
- A-definability = effectively computable

Undecidability

e Convertibility problem for A-calculus
undecidable.

e Validity in first-order predicate logic
undecidable.

* Proved independently year later by Turing.

~ First showed halting problem undecidable

Alan Turing

* Turing ‘
#a
- 1936, in Cambridge, England, definition of Turing
machine

- 193638, in Princeton to get Ph.D. under Church.
- 1937, first published fixed point combinator

* (A Ay. (y (xxy))) (AX. Ay. (y (xxy)))

- Kleene did not use fixed-point operator in defining functions
on natural numbers!

- Broke German enigma code in WW2, Turing test Al

- Persecuted as homosexual, committed suicide in 1954

Typed Lambda Calculus

Types

e Can specity types of identifiers
e Start with base type e and build up types and

terms:
- Type ::= e | Type — Type
- M:u=vIMM)I|Av: Type. M

e Examples:
sillnesilieNe=icelmielmielile rle) >, | ||

- Terms: Ax:e.x, MA:e —e.Az:e. f(f(2)

Definitions

e Farlier definitions generalize over types t:
- truet = Ax:t. Ay:u. X

- nt = As: t—t. Az: t. s®@(z)

e Some untyped terms can’t be typed:
- O =(0x xx)0x. xx)
- Y=M.(0x f xx)0x. f (xx)

Totally Awesome!!

 Theorem: If M is a term of the typed lambda
calculus, then M has a unique normal form.
Le., every term of the typed lambda calculus is total.

e Corollary: The typed lambda calculus does #ot
include all computable functions.

N O

—d Ly

Why (Static) Types?

Increase readability; esp. for libraries
Hide representation

Detection of errors.

Help disambiguate operators

Compiler optimization. E.g. know where fields of
record/struct are.

Help ensure different components in separately
compiled units will interoperate properly

Provide basis for code completion in editors

Types & Constructors

o Built-in types - primitive types (incl. size)

o Aggregate types - records/structs

e Mapping types - arrays/functions

e Recursive types - lists/trees

e Sequence types - files and strings (primitive?)

e User-defined types

Aggregate ‘lypes

o Cartesian products (tuples)
® Records / Structs

e Union Types
- C: typedef union {int i; float r;} utype
- unsafe
- Discriminated union safer

- Haskell type defs safe

Discriminated Union: Ada

type geometric (Kind: (Triangle, Square) := Square) is
record

color : ColorType := Red ;
Kind is tag

case Kind of /
when Triangle =
pt1,pt2,pt3:Poiat;

when Square =>
upperleft : Point;
length : INTEGER range 1..100;
end case;
end record;

ob1 : geometric - default is Square
obz : geometric(Triangle) - frozen, can't be changed

Mappings

® Arrays
- Static - location & size frozen at compile time (FORTRAN)

- Semi-static - size bound at compile time, location at invocation

(Pascal, C)

- Dynamic - szze and location bound at creation (ALGOL 60, Ada,

Java)

- Flex - size and location can be changed any time (Java vectors)

e Function Types - update less efficient

- update f arg nuVal = fn x => if x = arg then nuVal else f x

Recursive lypes

e In Haskell: data List = Nil | Cons (Integer, List)
e In C: struct list { int x; list *next; };

e Solutions to: list = { Nil } U (int x list)
1. finite seqs of ints followed by Nil: e.g., (2,(5,NiD)

2. finite or infinite seqs: if finite then end w/ Nil

e Recursive eqn’s always have a least solution

- least fixed point!

liStQ
liStl

liStQ

[1st

L.east Recursive Solutions

{Nil}

{Nil} U (int x listy)

{Nil} U {(n, Nil)|n € int}

= {Nil} U (int X listy)

= {Nil} U {(n, Nil)|n € int} U{(m, (n, Nil))|lm,n € int}

il asth

Some solutions inconsistent w/classical math!

User-Defined Types

e Named types
- More readable
- Easy to modify if localized
- Factorization (why repeat same def?)

- Added consistency checking if generative

e Enumeration types added to Java §

What does it mean for a

language to be type-sate?

Safe Languages

e Two kinds of execution errors

- Trapped errors: cause computation to halt immediately:.

e Divide by zero, null pointer exception

- Untrapped errors: go unnoticed and later cause problems.

e Access an illegal address, e.g., array bounds error.

* Program fragment is s«fe if it causes no untrapped
errors.

- Language is safe if all program fragments are safe.

See “Type Systems” by Luca Cardelli
http://lucacardelli.name/Papers/TypeSystems%201st%20Edition. US.pdf

Strongly Typed Languages

e Language designates forbidden errors
- those that are not allowed to happen.

- should include all untrapped errors

* Program fragment is well behaved if it generates
no forbidden errors.

e [anguage where all legal programs are well

behaved is strongly typed

Static vs. Dynamic Typing

e Most use static typing
- including C/Java/ML/Haskell
- binding of types to variables done at translation time.

- Find errors earlier, but conservative.

® dynamic typing
- LISP/Scheme/Racket/Python/Javascript/Grace

- binding of type to value, not variable.

e thus binding of type to variable changes dynamically

- Dynamic more flexible, but more overhead.

(Static) Type Checking

Static Type Checking

e Static type-checkers for strongly-typed
languages (i.e., rule out all “bad” programs)
must be conservative:

- Rule out some programs without errors.

o if (program-that-could-run-forever) {
eXpression-w-type-error;
} else {
EXPression-w-type-error;

j

