Lecture 9: More Lambda Calculus / Types

CSC ${ }^{131}$
Spring, 2019
Kim Bruce

Pure Lambda Calculus

- Terms of pure lambda calculus
- M ::= v| (M M) | $\lambda \mathrm{v}$. M
- Impure versions add constants, but not necessary!
- Turing-complete
- Left associative: $\mathrm{M} \mathrm{N} \mathrm{P} \mathrm{=} \mathrm{(M} \mathrm{N)} \mathrm{P}$.
- Computation based on substituting actual parameter for formal parameters

Computation Rules

- Reduction rules for lambda calculus:
$(\alpha) \lambda x . M \rightarrow \lambda y .([y / x] M)$, if $y \notin F V(M)$.
change name of parameters ifnere not capture old
(β) $(\lambda x . M) N \rightarrow[N / x] M$. computation by subst function argument for formal parameter $(\eta) \lambda x .(M x) \rightarrow M$.

Optional rule to get rid of excess λ 's

Computability

- Can encode all computable functions in pure untyped lambda calculus.
- $\underline{\text { true }}=\lambda u . \lambda v . u$
- true $a b=a$
$-\underline{\text { false }}=\lambda u . \lambda v_{0} v$
- false $a b=b$
- $\underline{\text { cond }}=\lambda u . \lambda \mathrm{v} . \lambda \mathrm{w} . \mathrm{u} \mathrm{vw}$
- cond true $a b=$? cond false $a b=$?

Encoding Natural Numbers

- Natural numbers:
$-\underline{o}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z}$.
$-\underline{I}=\lambda$ s. $\lambda \mathrm{z} . \mathrm{s} \mathrm{z}$.
$-\underline{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s} \mathrm{z})$.
- Integers encode repetition:
$-\underline{2} \mathrm{fx}=\mathrm{f}(\mathrm{fx})$
$-3 f x=f(f(f x))$
$-\underline{n} \mathrm{fx}=\mathrm{f}^{(\mathrm{n})}(\mathrm{x})$

Arithmetic

- $\underline{\text { Succ }}=\lambda$ n. λ s. $\lambda z . s(n s z)$
$-\operatorname{Succ} \underline{\mathrm{n}}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\underline{\mathrm{n}} \mathrm{s} z)=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}\left(\mathrm{s}^{(\mathrm{n})} \mathrm{z}\right)=\underline{\mathrm{n}+\mathrm{I}}$
- Plus $=\lambda$ n. λ m. λ s. $\lambda z . m$ s (n s z).
- Mult $=\lambda \mathrm{n} . \lambda \mathrm{m} .(\mathrm{m}(\underline{\text { Plus } n)}$ o $)$.
- $\underline{\text { isZero }}=\lambda \mathrm{n} . \mathrm{n}(\lambda \mathrm{x} . \underline{\text { false })} \underline{\text { true }}$
- Subtraction is hard!!

Recursion

- A different perspective: Start with
- fact $=\lambda n$. cond (isZero $n)$ I (Mult $n($ fact $($ Pred $n)))$
- Let F stand for the closed term:
$-\lambda \mathrm{f}$. $\lambda \mathrm{n}$. cond (isZero n) I (Mult $\mathrm{n}(\mathrm{f}($ Pred n$))$)
- Notice F(fact) = fact.
- fact is a fixed point of F
- To find fact, need only find fixed point of F!
- Easy w/ $\mathrm{g}(\mathrm{x})=\mathrm{x}$ * x , but F????

Fixed Points

- Several fixed point operators:
$-E x: \underline{Y}=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))$

Invented by Haskell Curry

- Claim for all $\mathrm{g}, \mathrm{Y} \mathrm{g}=\mathrm{g}(\mathrm{Y} \mathrm{g})$

$$
\begin{aligned}
\underline{Y} g & =(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) g \\
& =(\lambda x \cdot g(x x))(\lambda x \cdot g(x x)) \\
& =g((\lambda x \cdot g(x x))) \underline{(\lambda x \cdot g(x x)))} \\
& =g(\underline{Y})
\end{aligned}
$$

- If let $x_{0}=\underline{Y} g$, then $g\left(x_{0}\right)=x_{0}$.

Lambda Calculus

- λ-calculus invented in 1928 by Church in Princeton \& first published in 1932.
- Goal to provide a foundation for logic
- First to state explicit conversion rules.
- Original version inconsistent, but corrected
- "If this sentence is true then $\mathrm{I}=2$ " problematic!!
- 1933, definition of natural numbers

Collaborators

- 1931-1934: Grad students:
- J. Barkley Rosser and Stephen Kleene

- Church-Rosser confluence theorem ensured consistency (earlier version inconsistent)
- Kleene showed λ-definable functions very rich
- Equivalent to Herbrand-Gödel recursive functions
- Equivalent to Turing-computable functions.
- Founder of recursion theory, invented regular expressions
- Church's thesis:
- λ-definability \equiv effectively computable

Undecidability

- Convertibility problem for λ-calculus undecidable.
- Validity in first-order predicate logic undecidable.
- Proved independently year later by Turing.
- First showed halting problem undecidable

Alan Turing

- Turing
- 1936, in Cambridge, England, definition of Turing machine
- 1936-38, in Princeton to get Ph.D. under Church.
- 1937, first published fixed point combinator
- ($\lambda x \cdot \lambda y \cdot(y(x x y)))(\lambda x \cdot \lambda y .(y(x x y)))$
- Kleene did not use fixed-point operator in defining functions on natural numbers!
- Broke German enigma code in WW2, Turing test AI
- Persecuted as homosexual, committed suicide in 1954

Typed Lambda Calculus

Types

- Can specify types of identifiers
- Start with base type e and build up types and terms:
- Type ::= e I Type \rightarrow Type
- $\mathrm{M}::=\mathrm{v}|(\mathrm{M} M)| \lambda_{\mathrm{v}}$: Type. M
- Examples:
- Types: $\mathrm{e}, \mathrm{e} \rightarrow \mathrm{e}, \mathrm{e} \rightarrow \mathrm{e} \rightarrow \mathrm{e},(\mathrm{e} \rightarrow \mathrm{e}) \rightarrow \mathrm{e}, \ldots$
- Terms: $\lambda x: e . x, \quad \lambda f: e \rightarrow e . \lambda z: e . f(f(z))$

Definitions

- Earlier definitions generalize over types t :
- true $^{t}=\lambda x: t . \lambda y: u . x$
$-\underline{n}^{\mathrm{t}}=\lambda \mathrm{s}: \mathrm{t} \rightarrow \mathrm{t} \cdot \lambda \mathrm{z}: \mathrm{t} \cdot \mathrm{s}^{(\mathrm{n})}(\mathrm{z})$
- Some untyped terms can't be typed:
$-\Omega=(\lambda x .(x x))(\lambda x .(x \mathrm{x}))$
$-Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

Totally Awesome!!

- Theorem: If M is a term of the typed lambda calculus, then M has a unique normal form. I.e., every term of the typed lambda calculus is total.
- Corollary: The typed lambda calculus does not include all computable functions.

Types

Why (Static) Types?

- Increase readability, esp. for libraries
- Hide representation
- Detection of errors.
- Help disambiguate operators
- Compiler optimization. E.g. know where fields of record/struct are.
- Help ensure different components in separately compiled units will interoperate properly
- Provide basis for code completion in editors

Types \& Constructors

- Built-in types - primitive types (incl. size)
- Aggregate types - records/structs
- Mapping types - arrays/functions
- Recursive types - lists/trees
- Sequence types - files and strings (primitive?)
- User-defined types

Aggregate Types

- Cartesian products (tuples)
- Records / Structs
- Union Types
- C: typedef union \{int i; float r;\} utype
- unsafe
- Discriminated union safer
- Haskell type defs safe

Discriminated Union: Ada

```
type geometric (Kind: (Triangle, Square) := Square) is
    record
        color : ColorType := Red;
        case Kind of
        when Triangle \(\leftrightarrows\)
        ptI,pt2,pt3:Point;
        when Square \(\Rightarrow\)
                upperleft : Point;
                length : INTEGER range I..Ioo;
        end case;
    end record;
```

obi : geometric -- default is Square ob2 : geometric(Triangle) -- frozen, can't be changed

Mappings

- Arrays
- Static - location do size frozen at compile time (FORTRAN)
- Semi-static - size bound at compile time, location at invocation (Pascal, C)
- Dynamic - size and location bound at creation (ALGOL 60, Ada, Java)
- Flex - size and location can be changed any time (Java vectors)
- Function Types - update less efficient
- update f arg nuVal $=f n x \Rightarrow$ if $x=\arg$ then nuVal else $f x$

Recursive Types

- In Haskell: data List = Nil | Cons (Integer, List)
- In C: struct list $\{$ int x ; list *next; \};
- Solutions to: list $=\{$ Nil $\} \cup$ (int \times list)
I. finite seqs of ints followed by Nil: e.g., $(2,(5, \mathrm{Nil}))$

2. finite or infinite seqs: if finite then end w/ Nil

- Recursive eqn's always have a least solution
- least fixed point!

Least Recursive Solutions

$$
\begin{aligned}
\text { list }_{0} & =\{N i l\} \\
\text { list }_{1} & =\{N i l\} \cup\left(\text { int }^{\prime} \text { list }_{0}\right) \\
& =\{N i l\} \cup\{(n, N i l) \mid n \in i n t\} \\
\text { list }_{2} & =\{N i l\} \cup\left(\text { int } \times l i s t_{1}\right) \\
& =\{N i l\} \cup\{(n, N i l) \mid n \in i n t\} \cup\{(m,(n, N i l)) \mid m, n \in i n t\} \\
& \cdots \\
\text { list } & =\bigcup_{n} \text { list }_{n}
\end{aligned}
$$

Some solutions inconsistent w/classical math!

User-Defined Types

- Named types
- More readable
- Easy to modify if localized
- Factorization (why repeat same def?)
- Added consistency checking if generative
- Enumeration types added to Java 5

What does it mean for a language to be type-safe?

Safe Languages

- Two kinds of execution errors
- Trapped errors: cause computation to halt immediately.
- Divide by zero, null pointer exception
- Untrapped errors: go unnoticed and later cause problems.
- Access an illegal address, e.g., array bounds error.
- Program fragment is safe if it causes no untrapped errors.
- Language is safe if all program fragments are safe.

See "Type Systems" by Luca Cardelli
http://lucacardelli.name/Papers/TypeSystems\ ist\%2oEdition.US.pdf

Strongly Typed Languages

- Language designates forbidden errors
- those that are not allowed to happen.
- should include all untrapped errors
- Program fragment is well behaved if it generates no forbidden errors.
- Language where all legal programs are well behaved is strongly typed

Static vs. Dynamic Typing

- Most use static typing
- including C/Java/ML/Haskell
- binding of types to variables done at translation time.
- Find errors earlier, but conservative.
- dynamic typing
- LISP/Scheme/Racket/Python/Javascript/Grace
- binding of type to value, not variable.
- thus binding of type to variable changes dynamically
- Dynamic more flexible, but more overhead.
(Static) Type Checking

Static Type Checking

- Static type-checkers for strongly-typed languages (i.e., rule out all "bad" programs) must be conservative:
- Rule out some programs without errors.
- if (program-that-could-run-forever) \{ expression-w-type-error; \} else \{
expression-w-type-error;
\}

