

Homework

- First line:
- module Hmwk2 where
- Next line should be name as comment
- Name of program file should be Hmwk2.hs

Synthesis

Lexing

Step i: Lexical Analysis

- Lexer returns a list of all tokens from the input stream.
- Build from either regular expressions or (equivalently) finite automaton recognizing the tokens.
- See program LexArith.hs in class examples.
- Haskell program uses modules to hide info

Explaining LexArith

- module LexArith(...) where
- lists funcs and types exported (includes constructors)
- code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char])
- takes string and prefix of id to first full id and rest of string to be processed
- getnum :: [Char] -> Int -> (Int, [Char])
- similar
- getToken: [Char] \rightarrow (Token, [Char])
- takes string to pair of first recognized token and rest of list to be processed

Parsing

- Build parse tree from an expression
- Interested in abstract syntax tree
- drops irrelevant details from parse tree

Recursive Descent Parser

Base recognizer (ignore building tree now) on productions:
<exp> ::= <exp> <addop> <term>
addop (fst:rest) $=$ if fst=='+' or fst=='-' then rest else error ...
exp input $=$ let
inputAfterExp $=$ exp input
inputAfterAddop = addOp inputAfterExp
rest $=$ term inputAfterAddop
in
rest
or
fun exp input $=$ term(addOp(exp input));

Arithmetic grammar

```
    <exp> ::= <exp> <addop> <term>
        <term>
<term> ::= <term> <mulop> <factor>
        | <factor>
<factor> ::= ( <exp> )
    NUM
    | ID
<addop> ::= + -
<mulop> ::= * /
Look at parse tree \&o abstract syntax tree for \(2 * 3+7\)
```


Problems

- How do we select which production to use when alternatives?
- Left-recursive - never terminates

Rewrite Grammar

```
        <exp> ::= <term> <termTail>
    <termTail> ::= <addop> <term> <termTail>
            | \varepsilon
        <term> ::= <factor> <factorTail>
```

<factorTail> ::= <mulop> <factor> <factorTail>

```
<factorTail> ::= <mulop> <factor> <factorTail>
            | \varepsilon
<factor> ::= ( <exp> )
| NUM
| ID
```

 <addop> ::= + | -
    ```
    <addop> ::= + | -
<mulop> ::= * | /
No left recursion
How do we know which production to take?
```


FIRST

- Intuition $: \mathrm{b} \in \operatorname{First}(\mathrm{X})$ iff there is a derivation $X \rightarrow *$ b ω for some ω.
I. First $(b)=b$ for b a terminal or the empty string
2.If have $X::=\omega_{I}\left|\omega_{2}\right| \ldots \mid \omega_{n}$ then
$\operatorname{First}(X)=\operatorname{First}\left(\omega_{\mathrm{I}}\right) \cup \ldots \cup \operatorname{First}\left(\omega_{\mathrm{n}}\right)$
3.For any right hand side $u_{1} u_{2} \ldots u_{n}$
- First $\left(\mathbf{u}_{\mathrm{I}}\right) \subseteq \operatorname{First}\left(\mathrm{u}_{\mathrm{I}} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{n}}\right)$
- if all of $u_{1}, u_{2} \ldots, u_{i-1}$ can derive the empty string then also $\operatorname{First}\left(u_{i}\right) \subseteq \operatorname{First}\left(u_{1} u_{2} \ldots u_{n}\right)$
- empty string is in First $\left(u_{1} u_{2} \ldots u_{n}\right)$ iff all of $u_{1}, u_{2} \ldots, u_{n}$ can derive the empty string

Predictive Parsing

Goal: $a_{\mathrm{I}} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}$
$S \rightarrow \alpha$

$$
\rightarrow \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{X} \beta
$$

Want next terminal character derived to be a_{3}

Need to apply a production $\mathrm{X}::=\gamma$ where
I) γ can eventually derive a string starting with a_{3} or
2) If X can derive the empty string, and also if β can derive a string starting with a_{3}.
a_{3} in Follow (X)

First for Arithmetic

```
FIRST(<addop>) = {+, - }
FIRST(<mulop>) ={*,/}
FIRST(<factor>) ={(, NUM, ID }
FIRST(<term>) = {(, NUM, ID }
FIRST(<exp>) ={(, NUM, ID }
FIRST(<termTail>) ={+,-, \varepsilon}
FIRST(<factorTail>) ={*,/, \varepsilon}
```


Follow

- Intuition: A terminal $b \in \operatorname{Follow}(\mathrm{X})$ iff there is a derivation $\mathrm{S} \rightarrow{ }^{*}{ }^{\mathrm{v} X b} \omega$ for some v and ω.
I.If S is the start symbol then put $\mathrm{EOF} \in$ Follow(S)

2. For all rules of the form $A::=w X v$,
a.Add all elements of First(v) to Follow(X)
b. If v can derive the empty string then add all elts of Follow(A) to Follow(X)

- Follow(X) only used if can derive empty string from X .

Follow for Arithmetic only needed to
$\operatorname{FOLLOW}(<\exp >) \leftrightarrows$ EOF,) \} <termTail>,
FOLLOW (<termTail>) $=$ FOLLOW (<exp>) $=\{$ EOF, $)\}$
FOLLOW (<term>) $=\operatorname{FIRST}(<$ termTail $>) \cup$
FOLLOW (<exp>) \cup FOLLOW(<termTail>)

$$
=\{+,-, \text { EOF },)\}
$$

FOLLOW(<factorTail>) $=\{+,-$, EOF, $)\}$
FOLLOW(<factor>) $=\{*, /,+,-, E O F\}$
FOLLOW (<addop>) $=\{($, NUM, ID $\}\}$ Not needed!
FOLLOW (<mulop $)=\{(, N U M, I D\}\}$

Predictive Parsing, redux

$$
\begin{aligned}
& \text { Goal: } a_{1} a_{2} \ldots a_{n} \\
& S \rightarrow \alpha \\
& \quad \ldots \\
& \quad \rightarrow a_{1} a_{2} X \beta
\end{aligned}
$$

Want next terminal character derived to be a_{3}
Need to apply a production $\mathrm{X}::=\gamma$ where
I) γ can eventually derive a string starting with a_{3} or
2) If X can derive the empty string, then see if β can derive a string starting with a_{3}.

Building Table

- Put $\mathrm{X}::=\alpha$ in entry (X, a) if either
- a in First(α), or
- e in First(α) and a in Follow(X)
- Consequence: $\mathrm{X}::=\alpha$ in entry (X, a) iff there is a derivation s.t. applying production can eventually lead to string starting with a.

Need Unambiguous

- No table entry should have more than one production to ensure it's unambiguous, as otherwise we don't know which rule to apply.
- Laws of predictive parsing:
- If $A::=\alpha_{1}|\ldots| \alpha_{n}$ then for all $i \neq j$, First $\left(\alpha_{i}\right) \cap \operatorname{First}\left(\alpha_{j}\right)=\varnothing$.
- If $\mathrm{X} \rightarrow^{*} \varepsilon$, then First $(\mathrm{X}) \cap \operatorname{Follow}(\mathrm{X})=\varnothing$.
- Laws of predictive parsing:
- If $\mathrm{A}::=\alpha_{\mathrm{I}}|\ldots| \alpha_{\mathrm{n}}$ then for all $\mathrm{i} \neq \mathrm{j}$, First $\left(\alpha_{i}\right) \cap$ First $\left(\alpha_{i}\right)=\varnothing$.
- If $\mathrm{X} \rightarrow^{*} \varepsilon$, then $\operatorname{First}(\mathrm{X}) \cap \operatorname{Follow}(\mathrm{X})=\varnothing$.
- 2 nd is OK for arithmetic:
- $\operatorname{FIRST}(<$ termTail $>$) $=\{+,-, \varepsilon\}$
- FOLLOW $(<$ termTail $>)=\{$ EOF, $)\}$
- FIRST(<factorTail>) $=\{*, /, \varepsilon\}$
- FOLLOW(<factorTail>) $=\{+,-$, EOF, $)\}$

See ArithParse.bs

| Non-
 terminals | ID | NUM | Addop | Mulop | (|) | EOF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <exp> | I | I | | | I | | |
| <termTails | | | 2 | | | 3 | 3 |
| <term> | 4 | 4 | | | 4 | | |
| <factTail> | | | 6 | 5 | | 6 | 6 |
| <factor> | 9 | 8 | | | 7 | | |
| <addop> | | | IO | | | | |
| <mulop> | | | | II | | | |

Read off from table which production to apply!

More Options

- Parser Combinators
- Domain specific language for parsing.
- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere
- Talk about when cover Scala

Parser Combinators in Scala

```
            Syntax tree building code
def multOp = ("*" | "/")
def addOp = ("+" | "-")
def factor = "(" -> expr <- ")" | numericLit ^^ {...}
def term = factor ~ (factorTail*)^^{...}
def factorTail = multOp - factor }\mp@subsup{}{}{\wedge}{...
def expr = term ~ (termTail*) ^^ {...}
def termTail = addOp - term ^^{...}
```

