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Homework

• First line:

- module Hmwk2 where

- Next line should be name as comment

- Name of program file should be Hmwk2.hs
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Step 1: Lexical Analysis

Lexing

• Lexer returns a list of all tokens from the input stream.

• Build from either regular expressions or (equivalently) 
finite automaton recognizing the tokens.

• See program LexArith.hs in class examples.

• Haskell program uses modules to hide info

Explaining LexArith
• module LexArith(...) where 
- lists funcs and types exported (includes constructors)

• code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char]) 

• takes string and prefix of id to first full id and rest of string to 
be processed

- getnum :: [Char] -> Int -> (Int, [Char])

• similar

- getToken: [Char] → (Token, [Char])

• takes string to pair of first recognized token and rest of list to 
be processed

Parsing



Parsing

• Build parse tree from an expression

• Interested in abstract syntax tree
- drops irrelevant details from parse tree

Arithmetic grammar
        <exp> ::= <exp> <addop> <term> 
                | <term> 
       <term> ::= <term> <mulop> <factor> 
                | <factor> 
     <factor> ::= ( <exp> ) 
                | NUM 
                | ID 
      <addop> ::= + | -
      <mulop> ::= * | /  

Look at parse tree & abstract syntax tree for 2 * 3 + 7

Recursive Descent Parser
Base recognizer (ignore building tree now) on productions:

<exp> ::= <exp> <addop> <term>

   addop (fst:rest) = if fst==’+’ or fst==’-‘ then rest
                     else error ...

  exp input = let
         inputAfterExp = exp input
         inputAfterAddop = addOp inputAfterExp
         rest = term inputAfterAddop
       in 
         rest

or

fun exp input = term(addOp(exp input));

Problems

• How do we select which production to use 
when alternatives?

• Left-recursive - never terminates



Rewrite Grammar
        <exp> ::= <term> <termTail>                (1)
   <termTail> ::= <addop> <term> <termTail>        (2)
                | ε                                (3)
       <term> ::= <factor> <factorTail>            (4)
 <factorTail> ::= <mulop> <factor> <factorTail>    (5)
                | ε                                (6)
     <factor> ::= ( <exp> )                        (7)
                | NUM                              (8)
                | ID                               (9)
      <addop> ::= + | -                           (10)
      <mulop> ::= * | /                           (11)

No left recursion
How do we know which production to take?

Predictive Parsing
Goal: a1a2...an

S → α
   ...
   → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where 
   1) γ can eventually derive a string starting with a3 or
   2) If X can derive the empty string, and also 
        if β can derive a string starting with a3.

a3 in First(γ)

a3 in Follow(X)

FIRST
• Intuition:  b ∈ First(X) iff there is a derivation  

                                            X →* bω for some ω.

1.First(b) = b for b a terminal or the empty string

2.If have X ::= ω1 | ω2 | ... | ωn then 
        First(X) = First(ω1) ∪ ... ∪ First(ωn)

3.For any right hand side u1u2...un

- First(u1) ⊆ First(u1u2...un) 

- if all of u1, u2..., ui-1  can derive the empty string then 
also First(ui) ⊆ First(u1u2...un)

- empty string is in First(u1u2...un) iff all of u1, u2..., un  
can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, - } 

FIRST(<mulop>) = { *, / } 
FIRST(<factor>) = { (, NUM, ID } 
FIRST(<term>) = { (, NUM, ID } 
FIRST(<exp>) = { (, NUM, ID } 
FIRST(<termTail>) = { +, -, ε } 
FIRST(<factorTail>) = { *, /, ε } 



Follow

• Intuition: A terminal b ∈ Follow(X) iff there is a 
derivation S →* vXbω for some v and ω.

1.If S is the start symbol then put EOF ∈ Follow(S)
2.For all rules of the form A ::= wXv,

a.Add all elements of First(v) to Follow(X)

b.If v can derive the empty string then add all elts of 
Follow(A) to Follow(X)

• Follow(X) only used if can derive empty string 
from X.

Follow for Arithmetic

          FOLLOW(<exp>) = { EOF, ) } 
  FOLLOW(<termTail>) = FOLLOW(<exp>) = { EOF, ) } 
        FOLLOW(<term>) = FIRST(<termTail>) ∪  
                                  FOLLOW(<exp>) ∪ FOLLOW(<termTail>) 
                                          = { +, -, EOF, ) } 
FOLLOW(<factorTail>) = { +, -, EOF, ) } 
      FOLLOW(<factor>) = { *, /, +, -, EOF } 
      FOLLOW(<addop>) = { (, NUM, ID }            Not needed!
      FOLLOW(<mulop>) = { (, NUM, ID } }

Only needed to 
calculate for 
<termTail>, 
<factorTail> !

Predictive Parsing, redux
Goal: a1a2...an

S → α
   ...
   → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where 
   1) γ can eventually derive a string starting with a3 or
   2) If X can derive the empty string, then see 
        if β can derive a string starting with a3.

Building Table

• Put X ::= α in entry (X,a) if either
- a in First(α), or

- e in First(α) and a in Follow(X)

• Consequence:  X ::= α in entry (X,a) iff there is 
a derivation s.t. applying production can 
eventually lead to string starting with a.



Need Unambiguous

• No table entry should have more than one production 
to ensure it’s unambiguous, as otherwise we 
don’t know which rule to apply.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅. 

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅. 

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• 2nd is OK for arithmetic:
- FIRST(<termTail>) = { +, -, ε } 

- FOLLOW(<termTail>) = { EOF, ) } 

- FIRST(<factorTail>) = { *, /, ε }

- FOLLOW(<factorTail>) = { +, -, EOF, ) }

}
}

no overlap!

Non-
terminals ID NUM Addop Mulop ( ) EOF

<exp> 1 1 1
<termTail> 2 3 3

<term> 4 4 4
<factTail> 6 5 6 6
<factor> 9 8 7
<addop> 10
<mulop> 11

Read off from table which production to apply!

See ArithParse.hs More Options

• Parser Combinators
- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere

• Talk about when cover Scala



Parser Combinators in Scala

def multOp = ("*" | "/")

def addOp = ("+" | "-")

def factor = "(" ~> expr <~ ")" |  numericLit ^^ {...}

def term = factor ~ (factorTail*) ^^ {...}

def factorTail = multOp ~ factor ^^{...}

def expr  = term ~ (termTail*) ^^ {...}

def termTail = addOp ~ term ^^{...}

Syntax tree building code 
omitted


