Lecture 6: Lexers & Parsers

CSC 131

Spring, 2019

Kim Bruce

e First line:

Homework

- module Hmwk2 where

- Next line should be name as comment

- Name of program file should be Hmwkz2.hs

Source
Program

Analysis

Lexical ~ Lexical
Analysis Items

Syntax
Analysis

Symbol Table

Other Tables

Parse

—_—

Tree

Semantic __ Annotated
An d[ySiS Parse Tree

Annotated
Parse Tree

Inter Code Inter. Optimz'z- Intermed. |

Generation

Synthesis

Optimized

Code ation Code

Symbol Table
Other Tables

Code Object
Generation Code

Step 1: Lexical Analysis

Lexing

o Lexer returns a list of all tokens from the input stream.

o Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

* See program LexArith.hs in class examples.

* Haskell program uses modules to hide info

Explaining LexArith
e module LexArith(...) where

- lists funcs and types exported (includes constructors)

* code details follow in file
- getid :: {Char} -> {Char} -> (Charl, {CharD

e takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: {Charl -> Int -> (Int, {CharD)
e similar
- getToken: [Char}l — (Token, {Char})

e takes string to pair of first recognized token and rest of list to
be processed

Parsing

Parsing

* Build parse tree from an expression

e Interested in abstract syntax tree

- drops irrelevant details from parse tree

Arithmetic grammar

<exp> ::= <exp> <addop> <term>
| <term>
<term> ::= <term> <mulop> <factor>
| <factor>
<factor> ::= (<exp>)
| NuM
| ID
<addop> ::= + | -
<mulop> ::= * | /

Look at parse tree & abstract syntax tree for 2 *3 + 7

Recursive Descent Parser

Base recognizer (ignore building tree now) on productions:
<exp> ::= <exp> <addop> <term>

addop (fst:rest) = if fst=='+' or fst=='-‘ then rest
else error ...

exp input = let

inputAfterExp
inputAfterAddop = addOp inputAfterExp

rest = term inputAfterAddop
in
rest
or

fun exp input = term(addOp(exp input));

Problems

e How do we select which production to use
when alternatives?

e Left-recursive - never terminates

Rewrite Grammar

<exp> ::= <term> <termTail>

<termTail> ::= <addop> <term> <termTail>

| €

<term> ::= <factor> <factorTail>

<factorTail> ::= <mulop> <factor> <factorTail>
| €
<factor> ::= (<exp>)

| NuM
| ID

<addop> ::= + | -

<mulop> ::= * | /

No left recursion
How do we know which production to take?

(1)
(2)
(3)
(4)
(3)
(6)
(7)
(8)
(9)
(10)
(11)

Predictive Parsing

Goal: a;a,...a,
S—a

— a,a, X[}

Want next terminal character derived to be a,
a; in First(y)
Need to apply a production X ::= Y where "
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, and also
if B can derive a string starting with a;.

a; in Follow(X)

FIRST

o Intuition: b € First(X) iff there is a derivation
X —=* bw for some .

I.First(b) = b for b a terminal or the empty string

2. Ifhave X ::= 0, | w, | ... | W, then
First(X) = First(w,) U ... U First(wy)

3.For any right hand side usu,...us
- First(uy) C First(UU,...upn)

- if all of uy, U,..., Ui can derive the empty string then
also First(u)) C First(uu,...us)

- empty string is in First(uu,...uy) iff all of uy, u,..., un
can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, -}
FIRST(<mulop>) = {*,/}
FIRST(<factor>) = { (NUM, ID }
FIRST(<term>) = { (NUM, ID }
FIRST(<exp>) = { (NUM, ID }
FIRST(<termTail>) ={+,-, €}
FIRST(<factorTail>) ={ *, /, €}

Follow

o Intuition: A terminal b € Follow(X) iff there is a
derivation S —=* vXbw for some v and w.

I.If S is the start symbol then put EOF € Follow(S)
2.For all rules of the form A ::= wXy,
d.Add all elements of First(v) to Follow(X)
b. If v can derive the empty string then add all elts of
Follow(A) to Follow(X)

* Follow(X) only used if can derive empty string
from X.

FOIIOW for Ar lthmetl%nly needed to

calculate for
<termTail>,
FOLLOW (<exp>) ={EOF,) } <factorTuil> !

FOLLOW (<termTail>) = F Wi(<exp>) ={ EOF,) }

FOLLOW/(<term>) = FIRST(<termTail>) U
FOLLOW /(<exp>) U FOLLOW (<termTail>)

={+,-, EOF,)}
FOLLOW /(<factorTail>) = { +, -, EOF,) }
FOLLOW (<factor>) = {*/, +, -, EOF }
FOLLOW (<addop>) = { (NUM, ID } } Not needed!
FOLLOW (<mulop>) = { (NUM, ID }

Predictive Parsing, redux

Goal: a;a,...a,
S—=a

— a2, X

Want next terminal character derived to be a,

Need to apply a production X ::= Y where
1) Y can eventually derive a string starting with a; or
2) If X can derive the empty string, then see
if P can derive a string starting with a;.

Building Table

* Put X ::= o in entry (X,a) if either

- ain First(a), or
- e in First(a) and a in Follow(X)
* Consequence: X ::= o in entry (X,a) iff there is

a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

* No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we

don’t know which rule to apply.

* Laws of predictive parsing:

- If A= aql..l an then for all i#j,
First(a) N First(oy) = &.

- If X =* g, then First(X) N Follow(X) = &.

e Laws of predictive parsing:

- IfA:u=al..l an then for all i#j,
First(o) N First(y) = .

- If X —* g, then First(X) N Follow(X) = &.

¢ 2nd is OK for arithmetic:

- FIRST(<termTail>) = {+, -, €} }
- FOLLOW/(<termTail>) = { EOF,) } 0 overldp.’
- FIRST(<factorTail>) = { *, /, € } }

- FOLLOW (<factorTail>) = { +, -, EOF,) }

See ArithParse.bs
Now | ID | NUM | Addop| Mulop| (|) | EOF
<exp> 1 I I
<term'Tail> 5 3 3
<term> 4 4 4
<factTail> 6 5 6 6
<factor> 9 8 7
<addop> 10
<mulop> II

Read off from table which production to apply!

More Options

e Parser Combinators

- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent
- Build into Haskell and Scala, definable elsewhere

e Talk about when cover Scala

Parser Combinators in Scala
Syntax tree building code

def multOp = (™" | "/") itted
def addOp = ("+" ["-")
def factor = "(" -> expr <- ")" | nume¢ricLit **{.}
def term = factor - (factorTail®) ** {1}

def factorTail = multOp - factor “...}

def expr = term - (termTail*) ** {...}

def termTail = addOp - term **{...}

