
Lecture 6: Lexers & Parsers
CSC 131

Spring, 2019

Kim Bruce

Homework

• First line:

- module Hmwk2 where

- Next line should be name as comment

- Name of program file should be Hmwk2.hs

Analysis

Source
Program

Lexical
Analysis

Symbol Table
Other Tables

Lexical
Items

Syntax
Analysis

Parse
Tree

Semantic
Analysis

Annotated
Parse Tree

Synthesis

Symbol Table
Other Tables

Inter.
Code

Optimiz-
ation

Optimized
Intermed.

Code
Code

Generation
Object
Code

Inter. Code
Generation

Annotated
Parse Tree

Step 1: Lexical Analysis

Lexing

• Lexer returns a list of all tokens from the input stream.

• Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

• See program LexArith.hs in class examples.

• Haskell program uses modules to hide info

Explaining LexArith
• module LexArith(...) where
- lists funcs and types exported (includes constructors)

• code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char])

• takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: [Char] -> Int -> (Int, [Char])

• similar

- getToken: [Char] → (Token, [Char])

• takes string to pair of first recognized token and rest of list to
be processed

Parsing

Parsing

• Build parse tree from an expression

• Interested in abstract syntax tree
- drops irrelevant details from parse tree

Arithmetic grammar
 <exp> ::= <exp> <addop> <term>
 | <term>
 <term> ::= <term> <mulop> <factor>
 | <factor>
 <factor> ::= (<exp>)
 | NUM
 | ID
 <addop> ::= + | -
 <mulop> ::= * | /

Look at parse tree & abstract syntax tree for 2 * 3 + 7

Recursive Descent Parser
Base recognizer (ignore building tree now) on productions:

<exp> ::= <exp> <addop> <term>

 addop (fst:rest) = if fst==’+’ or fst==’-‘ then rest
 else error ...

 exp input = let
 inputAfterExp = exp input
 inputAfterAddop = addOp inputAfterExp
 rest = term inputAfterAddop
 in
 rest

or

fun exp input = term(addOp(exp input));

Problems

• How do we select which production to use
when alternatives?

• Left-recursive - never terminates

Rewrite Grammar
 <exp> ::= <term> <termTail> (1)
 <termTail> ::= <addop> <term> <termTail> (2)
 | ε (3)
 <term> ::= <factor> <factorTail> (4)
 <factorTail> ::= <mulop> <factor> <factorTail> (5)
 | ε (6)
 <factor> ::= (<exp>) (7)
 | NUM (8)
 | ID (9)
 <addop> ::= + | - (10)
 <mulop> ::= * | / (11)

No left recursion
How do we know which production to take?

Predictive Parsing
Goal: a1a2...an

S → α
 ...
 → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
 1) γ can eventually derive a string starting with a3 or
 2) If X can derive the empty string, and also
 if β can derive a string starting with a3.

a3 in First(γ)

a3 in Follow(X)

FIRST
• Intuition: b ∈ First(X) iff there is a derivation  

 X →* bω for some ω.

1.First(b) = b for b a terminal or the empty string

2.If have X ::= ω1 | ω2 | ... | ωn then 
 First(X) = First(ω1) ∪ ... ∪ First(ωn)

3.For any right hand side u1u2...un

- First(u1) ⊆ First(u1u2...un)

- if all of u1, u2..., ui-1 can derive the empty string then
also First(ui) ⊆ First(u1u2...un)

- empty string is in First(u1u2...un) iff all of u1, u2..., un
can derive the empty string

First for Arithmetic

FIRST(<addop>) = { +, - }

FIRST(<mulop>) = { *, / }
FIRST(<factor>) = { (, NUM, ID }
FIRST(<term>) = { (, NUM, ID }
FIRST(<exp>) = { (, NUM, ID }
FIRST(<termTail>) = { +, -, ε }
FIRST(<factorTail>) = { *, /, ε }

Follow

• Intuition: A terminal b ∈ Follow(X) iff there is a
derivation S →* vXbω for some v and ω.

1.If S is the start symbol then put EOF ∈ Follow(S)
2.For all rules of the form A ::= wXv,

a.Add all elements of First(v) to Follow(X)

b.If v can derive the empty string then add all elts of
Follow(A) to Follow(X)

• Follow(X) only used if can derive empty string
from X.

Follow for Arithmetic

 FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<termTail>) = FOLLOW(<exp>) = { EOF,) }
 FOLLOW(<term>) = FIRST(<termTail>) ∪
 FOLLOW(<exp>) ∪ FOLLOW(<termTail>)
 = { +, -, EOF,) }
FOLLOW(<factorTail>) = { +, -, EOF,) }
 FOLLOW(<factor>) = { *, /, +, -, EOF }
 FOLLOW(<addop>) = { (, NUM, ID } Not needed!
 FOLLOW(<mulop>) = { (, NUM, ID } }

Only needed to
calculate for
<termTail>,
<factorTail> !

Predictive Parsing, redux
Goal: a1a2...an

S → α
 ...
 → a1a2Xβ

Want next terminal character derived to be a3

Need to apply a production X ::= γ where
 1) γ can eventually derive a string starting with a3 or
 2) If X can derive the empty string, then see
 if β can derive a string starting with a3.

Building Table

• Put X ::= α in entry (X,a) if either
- a in First(α), or

- e in First(α) and a in Follow(X)

• Consequence: X ::= α in entry (X,a) iff there is
a derivation s.t. applying production can
eventually lead to string starting with a.

Need Unambiguous

• No table entry should have more than one production
to ensure it’s unambiguous, as otherwise we
don’t know which rule to apply.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• Laws of predictive parsing:
- If A ::= α1 | ...| αn then for all i̸≠ j,  

First(αi) ∩ First(αj) = ∅.

- If X →* ε, then First(X) ∩ Follow(X) = ∅.

• 2nd is OK for arithmetic:
- FIRST(<termTail>) = { +, -, ε }

- FOLLOW(<termTail>) = { EOF,) }

- FIRST(<factorTail>) = { *, /, ε }

- FOLLOW(<factorTail>) = { +, -, EOF,) }

}
}

no overlap!

Non-
terminals ID NUM Addop Mulop () EOF

<exp> 1 1 1
<termTail> 2 3 3

<term> 4 4 4
<factTail> 6 5 6 6
<factor> 9 8 7
<addop> 10
<mulop> 11

Read off from table which production to apply!

See ArithParse.hs More Options

• Parser Combinators
- Domain specific language for parsing.

- Even easier to tie to grammar than recursive descent

- Build into Haskell and Scala, definable elsewhere

• Talk about when cover Scala

Parser Combinators in Scala

def multOp = ("*" | "/")

def addOp = ("+" | "-")

def factor = "(" ~> expr <~ ")" | numericLit ^^ {...}

def term = factor ~ (factorTail*) ^^ {...}

def factorTail = multOp ~ factor ^^{...}

def expr = term ~ (termTail*) ^^ {...}

def termTail = addOp ~ term ^^{...}

Syntax tree building code
omitted

