Lecture 5: I/O!

CSC 131
Spring, 2019

Kim Bruce

Homework

e First line:
- module Hmwk2 where
- Next line should be name as comment

- Name of program file should be Hmwkz2.hs

History of I/O

e Big embarrassment to lazy functional
programming community

- ML, Scheme/LISP/Racket didn’t care about being
purely functional

e Alternatives:

- Streams Haskell 1.0 adopted, essentially lazy lists
- Continuations
e pure functions passed to IO routines to process input

- Pass state of world as parameter

e Hard to make single-threaded

Stream Model

e Move side effects outside of functional
program

- main: String -> String

Wrapper Program, written in some other language

° .
tandard
standard input Haskell . sotnfp?;
locati fil askell main
ocation (file _____ —> |ocation (file

or stdin) program or stdin)

- But what if more than one file or socket or ...?

Stream Model

* Enrich argument and return type of main to
include all input and output events.

main :: [Response] -> [Request]
data Request = ReadFile Filename
| WriteFile FileName String
[—
data Response = RequestFailed
| ReadOK String
| WriteOk
| Success | ..

* Wrapper program interprets requests and adds
responses to input.

Stream Model is Awkward!

e Hard to extend

- New 1/O operations require adding new constructors
to Request and Response types, modifying wrapper

» Does not associate Request with Response

- easy to get “out-of-step,” which can lead to deadlock

* Not composable

- no easy way to combine two “main” programs

e ... and other problems!!!

Defining Monads

«——— part of Standard Prelude

e class Monad m where
G>=):ma—(@—mb)—mb
return:a—>ma
fail:: string > ma

- >>= allows a kind of composition of wrapped values or
computations —- called bind

- return wraps an unwrapped value.

- fail takes error string & aborts program

Maybe Monad

. t of Standard Prelud.
- instance Monad Maybe where part of Standard Prelude

(>>=) Nothing f = Nothing
(>=) (Just) f=fx
return x = Just x

fail s = Nothing

- >>= preserves “Nothing”,

>>= unwraps argument to compute w/ a Just’ed value

- Second arg of >>= is function applied to unwrapped
value

- Abbreviate compu >>= \x —> exp as
do x <- compu
exp

Back to Example

* Expression

- getPFN name rooms phones =
do rm <- getDormFor name rooms
num <- getPhoneForRoom rm phones
return num

- abbreviates

- getPFN name rooms phones =
getDormFor name rooms >>=
(\rm -> getPhoneForRoom rm phones)

Monads to Rescue!

e Value of type (IO a) is an action
- that may perform some input/output

- and deliver result of type a

I/0O

- main :: IO() -“IO action”

main = putStrLn “Hello World!”

- where putStrLn:: String — 10()

- getLine :: IO String -~ “IO action” returning string

* Want echo = putStrLn getLine
- Types don’t match
- Need >> = for IO monad!!

- echo = do str <- getLine
putStrLn str

See monad.bs

Connecting Actions

getLine IO String

String putStrLn

Glued together with >>=

10 O

More 10

ask :: String -> String -> 100
ask prompt ansPrefix =
do putStr (prompt++" ")
response <- getLine
putStrLn (ansPrefix ++

"" ++ response)

getlnteger :: 1O Integer
getlnteger = do putStr "Enter an integer: "
line <- getLine
return (read line)
-- converts string to Integer then to 10 Integer

IO & Ref Transparency

* Main program is IO action w/type IO()

* Perform IO in IO actions & call pure functions
from inside there

e Can never escape from 10! Unlike Maybe.

= No constructors for 10, so can’t pattern match to escape!!!

* IO impure in that successive calls of getLine
return different values.

Using IO in Haskell

e Can build language at IO monad level:

ifIO:: IO Bool->I0a->I0a->10a
ifIO b tv fv =do { bv <- b;
if bv then tv else fv}

whileIO :: 10 Bool -> I0O() -> I0O()
whileIO b m =ifIO b
(do {m; whileIO b m})
(return())

See Chapter 7 of Learn You a Haskell

More Info on Monads

* See “documentation” page of class web page

* For comprehensive list of tutorials, see

- Monad Tutorials Timeline

Evaluating Functional
Languages

Program Correctness

* Verification easier if language satisfies
declarative language test - evaluate once and
reuse as necessary.

¢ letval I = E in E’ end is equivalent to {E/I1E’

e Not true if imperative features.

® Only true if lazy evaluation.

e Let E be a functional expression (no side effects).
If E converges to a value v with eager evaluation
then it converges to the same value with lazy eval.

Why not be lazy?

* Eager languages easier to implement w/
conventional techniques

e If side-effects then when will they occur?

* If computing in parallel, want to start as soon
as feasible.

- Even if result may be wasted!

* Can simulate in eager languages by adding
extra dummy parameter to delay evaluation.

Haskell Later ...

¢ Type inference algorithm
* Support for ADT’s and modules
e Support for exception handling

* Garbage collection

Implementation Issues

* Slower than imperative
- Lists instead of arrays

- Passing around functions is expensive
e See why later!

- Recursion can use more space than iteration

Lack of destructive updating (but sharing helps!)

Listful style

Lazy has its own extra overhead

Summary of Haskell

* Successful language for designing large systems

¢ Lots of experimentation with language design

- Type classes, software transactional memory, parser
combinators

* See “Tackling the Awkward Squad”

Summary of Functional Langs

* Use requires alternative approaches
* Declarative languages support reasoning
 Higher-order functions powerful

* Some loss of efficiency balanced by programmer
efficiency

e Implicit Polymorphism

* Strongly influence modern imperative languages

Building an Interpreter or
compiler

Compiler Structure

e Analysis:
- Break into lexical items, build parse tree, annotate
parse tree (e.g. via type checking)
* Synthesis:

- generate simple intermediate code, optimization
(look at instructions in context), code generation,
linking and loading.

Symbol Table

e Symbol table:

- Contains all id names,

- kind of id (vble, array name, proc name, formal
parameter),

- type of value,

- where visible, etc.

Analysis

Source Lexical Lexical Syntax Parse Semantic___ Annotated
Program Analysis — tems Analysis ~ Tree Analysis ~ Parse Tree

Symbol Table
Other Tables

Synthesis

Optimized
I;nnot’ia‘ted Inter Code_Inter. | Optz'.mz'z- _ Intermed. | Code.
arse Tree Generation Code gtion Code Generation
Symbol Table
Other Tables

Object
Code

Portable Compilers

* Separate front and back-ends that share same
intermediate code (GNU compilers)

- Write single front end for each language

- Write single back end for each operating system -
architecture combination.

- Mix and match to build complete compilers

e JVM starting to play that role too

Step 1: Lexical Analysis

Lexing

e Lexer returns a list of all tokens from the input stream.

o Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

o See program LexArith.hs in class examples.

o Haskell program uses modules to hide info

Explaining LexArith
e module LexArith(...) where

- lists funcs and types exported (includes constructors)

* code details follow in file
- getid :: {Char} -> {Char} -> (Charl, {CharD

e takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: {Charl -> Int -> (Int, {Char})
e similar
- getToken: [Char} — (Token, {Char})

o takes string to pair of first recognized token and rest of list to
be processed

