
Lecture 5: I/O!
CSC 131

Spring, 2019

Kim Bruce

Homework

• First line:

- module Hmwk2 where

- Next line should be name as comment

- Name of program file should be Hmwk2.hs

History of I/O

• Big embarrassment to lazy functional
programming community
- ML, Scheme/LISP/Racket didn’t care about being

purely functional

• Alternatives:
- Streams

- Continuations

• pure functions passed to IO routines to process input

- Pass state of world as parameter

• Hard to make single-threaded

Haskell 1.0 adopted, essentially lazy lists

Stream Model

• Move side effects outside of functional
program
- main:: String -> String

- But what if more than one file or socket or ...?

Haskell main
program

•
standard input
location (file

or stdin)

•
standard
output

location (file
or stdin)

Wrapper Program, written in some other language

Stream Model

• Enrich argument and return type of main to
include all input and output events.

• Wrapper program interprets requests and adds
responses to input.

main :: [Response] -> [Request]
data Request = ReadFile Filename
 | WriteFile FileName String
 | …
data Response = RequestFailed
 | ReadOK String
 | WriteOk
 | Success | …

Stream Model is Awkward!
• Hard to extend
- New I/O operations require adding new constructors

to Request and Response types, modifying wrapper

• Does not associate Request with Response
- easy to get “out-of-step,” which can lead to deadlock

• Not composable
- no easy way to combine two “main” programs

• ... and other problems!!!

Defining Monads

• class Monad m where 
 (>>=) :: m a → (a → m b) → m b 
 return :: a → m a 
 fail:: string → m a
- >>= allows a kind of composition of wrapped values or

computations -- called bind

- return wraps an unwrapped value.

- fail takes error string & aborts program

part of Standard Prelude

Maybe Monad
- instance Monad Maybe where 

 (>>=) Nothing f = Nothing 
 (>>=) (Just x) f = f x 
 return x = Just x 
 fail s = Nothing

- >>= preserves “Nothing”,

- >>= unwraps argument to compute w/ a Just’ed value

- Second arg of >>= is function applied to unwrapped
value

- Abbreviate compu >>= \x → exp as  
 do x <- compu  
 exp

part of Standard Prelude

Back to Example

• Expression
- getPFN name rooms phones = 

 do rm <- getDormFor name rooms 
 num <- getPhoneForRoom rm phones 
 return num

- abbreviates

- getPFN name rooms phones = 
 getDormFor name rooms >>= 
 (\rm -> getPhoneForRoom rm phones) 

Monads to Rescue!

• Value of type (IO a) is an action
- that may perform some input/output

- and deliver result of type a

I/O
- main :: IO() -- “IO action”

- main = putStrLn “Hello World!”

- where putStrLn:: String → IO()

- getLine :: IO String -- “IO action” returning string

• Want echo = putStrLn getLine
- Types don’t match

- Need >> = for IO monad!!

- echo = do str <- getLine 
 putStrLn str

See monad.hs

Glued together with >>=

Connecting Actions

getLine

putStrLn

IO String

String

IO StringIO String

IO ()

More IO
ask :: String -> String -> IO()
ask prompt ansPrefix =
 do putStr (prompt++" ")
 response <- getLine
 putStrLn (ansPrefix ++ " " ++ response)

getInteger :: IO Integer
getInteger = do putStr "Enter an integer: "
 line <- getLine
 return (read line)
 -- converts string to Integer then to IO Integer

IO & Ref Transparency

• Main program is IO action w/type IO()

• Perform IO in IO actions & call pure functions
from inside there

• Can never escape from IO! Unlike Maybe.
- No constructors for IO, so can’t pattern match to escape!!!

• IO impure in that successive calls of getLine
return different values.

Using IO in Haskell

• Can build language at IO monad level:

ifIO :: IO Bool -> IO a -> IO a -> IO a
ifIO b tv fv = do { bv <- b;
 if bv then tv else fv}

whileIO :: IO Bool -> IO() -> IO()
whileIO b m = ifIO b
 (do {m; whileIO b m})
 (return())

See Chapter 7 of Learn You a Haskell

More Info on Monads

• See “documentation” page of class web page

• For comprehensive list of tutorials, see
- Monad Tutorials Timeline

Evaluating Functional
Languages

Program Correctness

• Verification easier if language satisfies
declarative language test -- evaluate once and
reuse as necessary.

• let val I = E in E’ end is equivalent to [E/I]E’

• Not true if imperative features.

• Only true if lazy evaluation.

• Let E be a functional expression (no side effects).
If E converges to a value v with eager evaluation
then it converges to the same value with lazy eval.

Why not be lazy?

• Eager languages easier to implement w/
conventional techniques

• If side-effects then when will they occur?

• If computing in parallel, want to start as soon
as feasible.
- Even if result may be wasted!

• Can simulate in eager languages by adding
extra dummy parameter to delay evaluation.

Haskell Later ...

• Type inference algorithm

• Support for ADT’s and modules

• Support for exception handling

• Garbage collection

Implementation Issues

• Slower than imperative
- Lists instead of arrays

- Passing around functions is expensive

• See why later!

- Recursion can use more space than iteration

- Lack of destructive updating (but sharing helps!)

- Listful style

- Lazy has its own extra overhead

Summary of Haskell

• Successful language for designing large systems

• Lots of experimentation with language design
- Type classes, software transactional memory, parser

combinators

• See “Tackling the Awkward Squad”

Summary of Functional Langs

• Use requires alternative approaches

• Declarative languages support reasoning

• Higher-order functions powerful

• Some loss of efficiency balanced by programmer
efficiency

• Implicit Polymorphism

• Strongly influence modern imperative languages

Building an Interpreter or
compiler

Compiler Structure

• Analysis:
- Break into lexical items, build parse tree, annotate

parse tree (e.g. via type checking)

• Synthesis:
- generate simple intermediate code, optimization
(look at instructions in context), code generation,
linking and loading.

Symbol Table

• Symbol table:
- Contains all id names,

- kind of id (vble, array name, proc name, formal
parameter),

- type of value,

- where visible, etc.

Analysis

Source
Program

Lexical
Analysis

Symbol Table
Other Tables

Lexical
Items

Syntax
Analysis

Parse
Tree

Semantic
Analysis

Annotated
Parse Tree

Synthesis

Symbol Table
Other Tables

Inter.
Code

Optimiz-
ation

Optimized
Intermed.

Code
Code

Generation
Object
Code

Inter. Code
Generation

Annotated
Parse Tree

Portable Compilers

• Separate front and back-ends that share same
intermediate code (GNU compilers)
- Write single front end for each language

- Write single back end for each operating system -
architecture combination.

- Mix and match to build complete compilers

• JVM starting to play that role too

Step 1: Lexical Analysis

Lexing

• Lexer returns a list of all tokens from the input stream.

• Build from either regular expressions or (equivalently)
finite automaton recognizing the tokens.

• See program LexArith.hs in class examples.

• Haskell program uses modules to hide info

Explaining LexArith
• module LexArith(...) where
- lists funcs and types exported (includes constructors)

• code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char])

• takes string and prefix of id to first full id and rest of string to
be processed

- getnum :: [Char] -> Int -> (Int, [Char])

• similar

- getToken: [Char] → (Token, [Char])

• takes string to pair of first recognized token and rest of list to
be processed

