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Homework

• First line:

- module Hmwk2 where

- Next line should be name as comment

- Name of program file should be Hmwk2.hs

History of I/O

• Big embarrassment to lazy functional 
programming community
- ML, Scheme/LISP/Racket didn’t care about being 

purely functional

• Alternatives:
- Streams

- Continuations 

• pure functions passed to IO routines to process input

- Pass state of world as parameter

• Hard to make single-threaded

Haskell 1.0 adopted, essentially lazy lists

Stream Model

• Move side effects outside of functional 
program
- main:: String -> String

- But what if more than one file or socket or ...?

Haskell main 
program

•
standard input 
location (file 

or stdin)

•
standard 
output 

location (file 
or stdin)

Wrapper Program, written in some other language



Stream Model

• Enrich argument and return type of main to 
include all input and output events. 

• Wrapper program interprets requests and adds 
responses to input. 

main :: [Response] -> [Request] 
data Request  =  ReadFile Filename 
  |  WriteFile FileName String 
  | … 
data Response =  RequestFailed 
  |  ReadOK String 
  |  WriteOk 
  |  Success  | …

Stream Model is Awkward!
• Hard to extend
- New I/O operations require adding new constructors 

to Request and Response types, modifying wrapper

• Does not associate Request with Response
- easy to get “out-of-step,” which can lead to deadlock

• Not composable
- no easy way to combine two “main” programs

• ... and other problems!!!

Defining Monads

• class Monad m where 
   (>>=) :: m a → (a → m b) → m b 
   return :: a → m a 
   fail:: string → m a
- >>= allows a kind of composition of wrapped values or 

computations -- called bind

- return wraps an unwrapped value.

- fail takes error string & aborts program

part of Standard Prelude

Maybe Monad
- instance Monad Maybe where 

          (>>=) Nothing f = Nothing 
          (>>=) (Just x) f = f x 
          return x = Just x 
          fail s = Nothing

- >>= preserves “Nothing”, 

- >>=  unwraps argument to compute w/ a Just’ed value

- Second arg of >>= is function applied to unwrapped 
value

- Abbreviate compu >>= \x → exp   as  
  do x <- compu  
       exp

part of Standard Prelude



Back to Example

• Expression
- getPFN name rooms phones = 

       do rm <- getDormFor name rooms 
            num <- getPhoneForRoom rm phones 
            return num

- abbreviates

- getPFN name rooms phones = 
       getDormFor name rooms >>= 
            (\rm -> getPhoneForRoom rm phones) 

Monads to Rescue!

• Value of type (IO a) is an action
- that may perform some input/output

- and deliver result of type a

I/O
- main :: IO( )     -- “IO action”

- main = putStrLn “Hello World!”

- where putStrLn:: String → IO( )

- getLine :: IO String    -- “IO action” returning string

• Want echo = putStrLn getLine
- Types don’t match

- Need >> = for IO monad!!

- echo = do str <- getLine 
                 putStrLn str

See monad.hs

Glued together with >>=

Connecting Actions

getLine

putStrLn

IO String

String

IO StringIO String

IO ( )



More IO
ask :: String -> String -> IO()
ask prompt ansPrefix = 
                    do putStr (prompt++" ")
                          response <- getLine
                          putStrLn (ansPrefix ++ " " ++ response)

getInteger :: IO Integer
getInteger = do putStr "Enter an integer: "
                           line <- getLine
                           return (read line)  
                     -- converts string to Integer then to IO Integer

IO & Ref Transparency

• Main program is IO action w/type IO( )

• Perform IO in IO actions & call pure functions 
from inside there

• Can never escape from IO!  Unlike Maybe.
- No constructors for IO, so can’t pattern match to escape!!!

• IO impure in that successive calls of getLine 
return different values.

Using IO in Haskell

• Can build language at IO monad level:

ifIO :: IO Bool -> IO a -> IO a -> IO a
ifIO b tv fv = do { bv <- b;
                               if bv then tv else fv}

whileIO :: IO Bool -> IO( ) -> IO( )
whileIO b m = ifIO b
                         (do {m; whileIO b m})
                         (return( ))

See Chapter 7 of Learn You a Haskell

More Info on Monads

• See “documentation” page of class web page

• For comprehensive list of tutorials, see
- Monad Tutorials Timeline



Evaluating Functional 
Languages

Program Correctness

• Verification easier if language satisfies 
declarative language test -- evaluate once and 
reuse as necessary.

• let val I = E in E’ end is equivalent to [E/I]E’

• Not true if imperative features.

• Only true if lazy evaluation.

• Let E be a functional expression (no side effects).  
If E converges to a value v with eager evaluation 
then it converges to the same value with lazy eval.

Why not be lazy?

• Eager languages easier to implement w/  
conventional techniques

• If side-effects then when will they occur?

• If computing in parallel, want to start as soon 
as feasible.
- Even if result may be wasted!

• Can simulate  in eager languages by adding 
extra dummy parameter to delay evaluation.

Haskell Later ...

• Type inference algorithm

• Support for ADT’s and modules

• Support for exception handling

• Garbage collection



Implementation Issues

• Slower than imperative
- Lists instead of arrays

- Passing around functions is expensive

• See why later!

- Recursion can use more space than iteration

- Lack of destructive updating (but sharing helps!)

- Listful style

- Lazy has its own extra overhead

Summary of Haskell

• Successful language for designing large systems

• Lots of experimentation with language design
- Type classes, software transactional memory, parser 

combinators

• See “Tackling the Awkward Squad”

Summary of Functional Langs

• Use requires alternative approaches

• Declarative languages support reasoning

• Higher-order functions powerful

• Some loss of efficiency balanced by programmer 
efficiency

• Implicit Polymorphism

• Strongly influence modern imperative languages

Building an Interpreter or 
compiler



Compiler Structure

• Analysis:
- Break into lexical items, build parse tree, annotate 

parse tree (e.g. via type checking)

• Synthesis:
- generate simple intermediate code, optimization 
(look at instructions in context), code generation, 
linking and loading.

Symbol Table

• Symbol table: 
- Contains all id names, 

- kind of id (vble, array name, proc name, formal 
parameter), 

- type of value, 

- where visible, etc. 
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Portable Compilers

• Separate front and back-ends that share same 
intermediate code (GNU compilers)
- Write single front end for each language

- Write single back end for each operating system - 
architecture combination.

- Mix and match to build complete compilers

• JVM starting to play that role too

Step 1: Lexical Analysis

Lexing

• Lexer returns a list of all tokens from the input stream.

• Build from either regular expressions or (equivalently) 
finite automaton recognizing the tokens.

• See program LexArith.hs in class examples.

• Haskell program uses modules to hide info

Explaining LexArith
• module LexArith(...) where 
- lists funcs and types exported (includes constructors)

• code details follow in file
- getid :: [Char] -> [Char] -> ([Char], [Char]) 

• takes string and prefix of id to first full id and rest of string to 
be processed

- getnum :: [Char] -> Int -> (Int, [Char])

• similar

- getToken: [Char] → (Token, [Char])

• takes string to pair of first recognized token and rest of list to 
be processed


