
Lecture 4: Monads!
CSC 131

Spring, 2019

Kim Bruce

Homework

• Turn in using submit.cs.pomona.edu

• For second homework, turn in two files:

- pdf file with complete homework solutions (including
Haskell code)

- file with hs suffix that contains only executable
programs (so we can test your code)

- put in folder and zip them up to submit.

Start Simpler: Functor

• Modeled on map function on lists

- [] here means operator that takes a type and makes it
into a list type

• See later how can use with trees or other
structured data

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor ([]) where
 fmap = map

Trees are functors too!

data Tree a = Niltree | Maketree (a, Tree a, Tree a)
 deriving Show

instance Functor Tree where
 fmap f Niltree = Niltree
 fmap f (Maketree (root, left, right)) =
 Maketree (f root, fmap f left, fmap f right)

Functor Laws

• fmap id = id -- 1st functor law

• fmap (g . f) = fmap g . fmap f -- 2nd functor law

- “.” is function composition

- Can write fmap as an infix operator with <$>
• Thus fmap f elts = f <$> elts

• Makes it look more like function application

Maybe

• data Maybe a = Nothing | Just a deriving (Eq, Show)

- Useful for computations that may not have a result

- Part of “standard prelude” imported by all Haskell
modules

- Look up a phone number for a person.

- Maybe Integer includes Nothing, Just 7, ...

Maybe is a Functor
• Sometimes may not get an answer:

- E.g, look up something that may not be there.

data Maybe a = Just a | Nothing
 deriving (Eq, Ord)

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just v) = Just (f v)

Function f slides under “Just”
so negate <$> (Just 3) == fmap negate (Just 3)
 == Just (-3)

Applying ourselves!

• What about binary functions like add?

• Can use Applicative Functor
class (Functor f) => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where
 pure = Just
 (Just f) <*> (Just x) = Just (f x)
 _ <*> _ = Nothing

Binary Operators

• Want (+) … Just 2 … Just 3 == Just (2 + 3)

- Note (+) <$> Just 2 == Just (2+)

• (2+) is same as \x -> 2 + x

- Recall (Just f) <*> Just x == Just (f x)

- Now (+) <$> Just 2 <*> Just 3 == Just (2+) <*> (Just 3) 
 == Just (2 + 3) == Just 5

• Pure wraps value with “Just”, while <*> allows
function application under “Just”

Summary

• Applicative has fmap or <$> from Functor

- <$> allows function to apply under Just

- adds pure, which wraps value with “Just”

- <*> to allow Just function to apply to Just value

• Rules:

- pure id <*> v = v -- Identity

- pure f <*> pure x = pure (f x) -- Homomorphism

- …

Let’s get more complicated!

Using Maybe as Monad
- dormRooms =[("Jack",10),("Jill",20),("Ann",20)]

- phonesForRooms = [(10,23434),(20,23435),(30,23438)]

- getDormFor name [] = Nothing 
 -- 2nd arg is name-room pairs 
getDormFor name ((nm,rm):rest) = if nm == name 
 then Just rm  
 else getDormFor name rest

- getPhoneForRoom rm [] = Nothing 
getPhoneForRoom rm ((rmnum,phone):rest) =  
 if rm == rmnum then Just phone  
 else getPhoneForRoom rm rest

Awkward to Compose
- getPhoneForName name rooms phones =  

 case getDormFor name rooms of  
 Nothing -> Nothing 
 Just rm -> getPhoneForRoom rm phones

• Must unwrap values to use and then rewrap
- Applicative won’t work!

• Easier if could write:
- getPFN name rooms phones = 

 do rm <- getDormFor name rooms 
 num <- getPhoneForRoom rm phones 
 return num

- and not have to worry about error cases!

Defining Monads

• class Applicative m => Monad m where 
 (>>=) :: m a → (a → m b) → m b 
 return :: a → m a 
 fail:: string → m a
- >>= allows a kind of composition of wrapped values or

computations -- called bind

- return wraps an unwrapped value.

- fail takes error string & aborts program

- a >> b abbreviates a >> _ -> b (constant fcn)

part of Standard Prelude

Maybe Monad
- instance Monad Maybe where 

 (>>=) Nothing f = Nothing 
 (>>=) (Just x) f = f x 
 return x = Just x 
 fail s = Nothing

- >>= preserves “Nothing”,

- >>= unwraps argument to compute w/ a Just’ed value

- Second arg of >>= is function applied to unwrapped
value

- Abbreviate compu >>= \x → exp as  
 do x <- compu  
 exp

part of Standard Prelude

Back to Example

• Expression
- getPFN name rooms phones = 

 do rm <- getDormFor name rooms 
 num <- getPhoneForRoom rm phones 
 return num

- abbreviates

- getPFN name rooms phones = 
 getDormFor name rooms >>= 
 (\rm -> getPhoneForRoom rm phones) 

Monads

• Provide operations to compose wrapped values

• Operations obey laws:
- return x >>= f == f x left identity

- c >>= return == c right identity

- c >>= (\x -> f x >>= g) == (c >>= f) >>= g 
 associativity

In “do” notation

• Left identity: 
 

• Right identity:

• Associativity: 
 
 

do { x' <- return x;
 f x'
 }

≡ do { f x }

do { x <- m;
 return x ≡ do { m }
 }

do { y <- do { x <- m;
 f x
 } ≡
 g y
}

do { x <- m; 
 do { y <- f x;
 g y
 }
}

Application of Laws

• Program:

• is equivalent to:

skip_and_get = do
 unused <- getLine
 line <- getLine
 return line

skip_and_get = do
 unused <- getLine
 getLine

by right identity

See http://www.haskell.org/haskellwiki/Monad_laws for more info

Other Monad Examples
• Error handling M(a) = a ∪ {error}
- Add a special “error value” to a type

- Define bind operator “>>=” to propagate error

• Information-flow tracking M(a) = a × Labels
- Add information flow label to each value

- Define bind to check and propagate labels

• State M(a) = a × States
- Computation produces value and new state

- Define bind to make output state of first go to input
state of second

Big Idea

• Write code as though computing on a, but
actually run it on M a.
- That’s what we did with Maybe monad!

Beauty

• Functional programming is beautiful:
- Concise and powerful abstractions

• higher-order functions, algebraic data types, parametric
polymorphism, principled overloading, ...

- Close correspondence with mathematics

• Semantics of a code function is the mathematical function

• Equational reasoning: if x = y, then f x = f y

- Independence of order-of-evaluation

• Confluence, aka Church-Rosser

Confluence means ...

e1 * e2

e1’ * e2 e1 * e2’

result

•

The compiler can
choose the best

sequential or parallel
evaluation order!

... and the Beast

• But to be useful as well as beautiful, a language
must manage the “Awkward Squad”:
- Input/Output

- Imperative update

- Error recovery (eg, timeout, divide by zero, etc.)

- Foreign-language interfaces

- Concurrency control

•The whole point of a running a program is to interact
with the external environment and affect it

The Direct Approach
• Just add imperative constructs “the usual way”
- I/O via “functions” with side effects:

• putChar ‘x’ + putChar ‘y’

- Imperative operations via assignable reference cells:

• z = ref 0; z := z + 1; ...

- Error recovery via exceptions

- Foreign language procedures mapped to “functions”

- Concurrency via operating system threads

• Can work if language determines eval order
Examples: ML, OCAML, Scheme/Racket

What if Lazy?

• Order of evaluation deliberately undefined.

• Example:
- ls = [putChar ‘x’, putChar ‘y’]

- if only use (length ls), then nothing printed!!

Fundamental Question

• Can you add imperative features with changing
the meaning of pure Haskell expressions?
- Even though laziness and side-effects are

incompatible!!

History

• Big embarrassment to lazy functional
programming community
- ML, Scheme/LISP/Racket didn’t care about being

purely functional

• Alternatives:
- Streams

- Continuations

• pure functions passed to IO routines to process input

- Pass state of world as parameter

• Hard to make single-threaded

Haskell 1.0 adopted, essentially lazy lists

Stream Model

• Move side effects outside of functional
program
- main:: String -> String

- But what if more than one file or socket or ...?

Haskell main
program

•
standard input
location (file

or stdin)

•
standard
output

location (file
or stdin)

Wrapper Program, written in some other language

Stream Model

• Enrich argument and return type of main to
include all input and output events.

• Wrapper program interprets requests and adds
responses to input.

main :: [Response] -> [Request]
data Request = ReadFile Filename
 | WriteFile FileName String
 | …
data Response = RequestFailed
 | ReadOK String
 | WriteOk
 | Success | …

Stream Model is Awkward!
• Hard to extend
- New I/O operations require adding new constructors

to Request and Response types, modifying wrapper

• Does not associate Request with Response
- easy to get “out-of-step,” which can lead to deadlock

• Not composable
- no easy way to combine two “main” programs

• ... and other problems!!!

Monads to Rescue!

• Value of type (IO a) is an action
- that may perform some input/output

- and deliver result of type a

I/O
- main :: IO() -- “IO action”

- main = putStrLn “Hello World!”

- where putStrLn:: String → IO()

- getLine :: IO String -- “IO action” returning string

• Want echo = putStrLn getLine
- Types don’t match

- Need >> = for IO monad!!

- echo = do str <- getLine 
 putStrLn str

See monad.hs

Glued together with >>=

Connecting Actions

getLine

putStrLn

IO String

String

IO StringIO String

IO ()

More IO
ask :: String -> String -> IO()
ask prompt ansPrefix =
 do putStr (prompt++" ")
 response <- getLine
 putStrLn (ansPrefix ++ " " ++ response)

getInteger :: IO Integer
getInteger = do putStr "Enter an integer: "
 line <- getLine
 return (read line)
 -- converts string to Integer then to IO Integer

IO & Ref Transparency

• Main program is IO action w/type IO()

• Perform IO in IO actions & call pure functions
from inside there

• Can never escape from IO! Unlike Maybe.
- No constructors for IO, so can’t pattern match to escape!!!

• IO impure in that successive calls of getLine
return different values.

Using IO in Haskell

• Can build language at IO monad level:

ifIO :: IO Bool -> IO a -> IO a -> IO a
ifIO b tv fv = do { bv <- b;
 if bv then tv else fv}
whileIO :: IO Bool -> IO() -> IO()
whileIO b m = ifIO b
 (do {m; whileIO b m})
 (return())

