
Lecture 3: More Haskell
CSC 131

Spring, 2019

Kim Bruce

Homework Posted

• Turn in using submit.cs.pomona.edu

• For first homework, make sure entire solution
can be read into ghci without error.

- Anything non-executable should be a comment:

• From -- to end of line or between {- stuff -}

- Later teach how to write “literate” Haskell.

Higher-Order Functions
• Functions that take function as parameter
- Ex: map:: (a → b) → ([a] → [b])

• Build new control structures
- listify oper identity [] = identity  

listify oper identity (fst:rest) =  
 oper fst (listify oper identity rest) 

- sum' = listify (+) 0 
mult' = listify (*) 1 
and' = listify (&&) True 
or' = listify (||) False

Exercise

• Is listify left or right associative?

- What is listify (-) 0 [3,2,1]? 2 or -6 or 0 or ???

• How can we change definition to associate the
other way?

See built-in foldl and foldr

Folding
• listify is in library as foldr

- Expands as:

• foldr f b [a1,...,an] = f a1 (f a2 (... (f an b) ...))

• foldl also exists — it associates from left

- foldl :: (b -> a -> b) -> b -> [a] -> b

- foldl _ b [] = b

- foldl f b (a:as) = foldl f (f b a) as

- Expands as:

• foldl f b [a1,...,an] = f (... (f (f b a1) a2) ...) an

Insertion Sort using foldl

insert :: [Int] -> Int -> [Int]
insert [] x = [x]
insert (y:ys) x | x < y = x:y:ys
 | otherwise = y:insert ys x

insertionSort :: [Int] -> [Int]
insertionSort = foldl insert []

Quicksort
partition (pivot, []) = ([],[])
partition (pivot, first : others) =
 let
 (smalls, bigs) = partition(pivot, others)
 in
 if first < pivot
 then (first:smalls, bigs)
 else (smalls, first:bigs)

Type is:

partition :: (Ord a) => (a, [a]) -> ([a], [a])

Quicksort
qsort [] = []
qsort [singleton] = [singleton]
qsort (first:rest) =
 let

 (smalls, bigs) = partition(first,rest)
in
 qsort(smalls) ++ [first] ++ qsort(bigs)

Type is:

qsort :: (Ord t) => [t] -> [t]

Quicksort - parametrically
partition (pivot, []) lThan = ([],[])
partition (pivot, first : others) lThan =
 let
 (smalls, bigs) = partition(pivot, others) lThan
 in
 if (lThan first pivot)
 then (first:smalls, bigs)
 else (smalls, first:bigs)

partition ::
 (t, [a]) -> (a -> t -> Bool) -> ([a], [a])

*Main> partition(6,[8,4,6,3])(>)

Quicksort
qsort [] lt = []
qsort [singleton] lt = [singleton]
qsort (first:rest) lt =
 let
 (smalls, bigs) = partition (first,rest) lt
 in
 qsort smalls lt ++ [first]
 ++ qsort bigs lt

qsort :: [a] -> (a -> a -> Bool) -> [a]

*Main> qsort [33,66,32,87,999,2](>)
[999,87,66,33,32,2]

Recursive Datatype Examples

• data IntTree = Leaf Integer |  
 Interior (IntTree,IntTree)  
 deriving Show
- Example values: Leaf 3, Interior(Leaf 4,Leaf -5), ...

• data Tree a = Niltree |  
 Maketree (a, Tree a, Tree a)

Binary Search Using Trees

insert new Niltree = Maketree(new,Niltree,Niltree)
insert new (Maketree (root,l,r)) =
if new < root
 then Maketree (root,(insert new l),r)
 else Maketree (root,l,(insert new r))

buildtree [] = Niltree
buildtree (fst : rest) =
 insert fst (buildtree rest)

Binary Search Tree

find elt Niltree = False
find elt (Maketree (root,left,right)) =
if elt == root

 then True
 else if elt < root then find elt left
 else find elt right -- elt > root

bsearch elt list = find elt (buildtree list)

Haskell is Lazy!

Lazy vs. Eager Evaluation

• Eager: Evaluate operand, substitute operand
value in for formal parameter, and evaluate.

• Lazy: Substitute operand for formal parameter
and evaluate body, evaluating operand only
when needed.
- Each actual parameter evaluated either not at all or

only once! (Essentially cache answer once computed)

- Like left-most outermost, but more efficient

Lazy evaluation

• Compute f(1/0,17) where f(x,y) = y

• Computing head(qsort[5000,4999..1]) is faster
than qsort[5000,4999..1]

• Compare time of computations of:
- fib 32

- dble (fib 32) where dble x = x + x

• Computations based on graph reduction
- like tree rewriting, except w/computation graphs - sharing

Lazy Lists
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fibList = f 1 1
where f a b = a : f b (a+b)

fastFib n = fibList!!n

fibs = 1:1:[a+b | (a,b) <- zip fibs (tail fibs)]

primes = sieve [2..]
 where
 sieve (p:x) = p :
 sieve [n | n <- x, n `mod` p > 0]

complexity O(fib n) ~ O(2n)

complexity O(n)

Call-by-need

• Efficient implementation of call-by-name
(Algol 60)

• If purely functional language then may evaluate
expression at most once, because can never
change.

• Hence graph instead of tree works!
- dble(fib 32)

Monads
The ontological essence of a monad is its irreducible
simplicity. Unlike atoms, monads possess no material or
spatial character. They also differ from atoms by their
complete mutual independence, so that interactions
among monads are only apparent. Instead, by virtue of
the principle of pre-established harmony, each monad
follows a preprogrammed set of "instructions"
peculiar to itself, so that a monad "knows" what to
do at each moment.
-wikipedia

Monads
In category theory, a branch of mathematics, a monad, or
triple is an (endo-)functor, together with two natural
transformations. Monads are used in the theory of pairs
of adjoint functors, and they generalize closure operators
on partially ordered sets to arbitrary categories.
-wikipedia

Start Simpler: Functor

• Modeled on map function on lists

- [] here means operator that takes a type and makes it
into a list type

• See later how can use with trees or other
structured data

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor ([]) where
 fmap = map

Functor Laws

• fmap id = id -- 1st functor law

• fmap (g . f) = fmap g . fmap f -- 2nd functor law

- “.” is function composition

- Can write fmap as an infix operator with <$>
• Thus fmap f elts = f <$> elts

• Makes it look more like function application

