
Lecture 28: Concurrent ML
CSC 131

Spring, 2019

Kim Bruce

Parallellism in Functional
Langs

• Extremely natural.
- When evaluating f(exp1,exp2,exp3), why not evaluate

all in parallel?

- Experts suggest using immutable data for parallelism
to avoid race conditions

- If no side effects then order of evaluation not
relevant. No race conditions!!!

• What could go wrong?

Concurrent ML

• Designed by John Reppy, now U. of Chicago

• Shared memory poor fit for functional langs
- Message passing

• Threads share dynamically created channels
carrying values of arbitrary type

• Threads synchronize by send and receive on
channels.

Threads in CML

• New thread created using spawn:
- val spawn: (unit → unit) → thread_id

• New thread applies function argument to () to
begin execution.
- Terminates when function returns.

- storage is garbage collected

• Returns unique id for child thread to parent

Channels

• Channels carry values of arbitrary type
- type ‘a chan

• Created by:
- val channel: unit → ‘a chan

- type inferred by use, only carry values of type ‘a

• Unused channels are garbage collected.

Synchronous Send & Receive

• Synchronous ops:
- val send: ‘a chan * ‘a → unit

- val recv: ‘a chan → ‘a

• Send blocks its thread until message received

• Recv blocks until matching send occurs

• Synchronize w/ rendezvous.

Synchronizing

fun child_talk() = let
 val ch = channel()
 val pr = CIO.print
 in
 spawn(fn() => (pr “begin 1\n”; send(ch,0);
 pr “end 1\n”));
 spawn(fn() => (pr “begin 2\n”; recv ch;
 pr “end 2\n”));
 end;

results in
begin 1
begin 2
end 1
end 2

either order}
either order}

Emulate Cell as Thread

• Mutable cell as server accepting requests to set
and get value
- I.e. cell is secretly a pair of channels - for request and

reply to queries
signature CELL = sig

 type ‘a cell

 val new: ‘a -> ‘a cell

 val get: ‘a cell -> ‘a

 val set: ‘a cell * ‘a -> unit

end

Mutable Cells as Threads

structure Cell :> CELL = struct
 datatype ‘a request = GET | PUT of ‘a

 datatype ‘a cell =
 CELL of {reqCh: ‘a request chan, replyCh: ‘a chan}

 fun new x = ...

 fun get (CELL{reqCh,replyCh}) =
 (send(reqCh, GET); recv(replyCh))

 fun set (CELL{reqCh, replyCh},x) = (send(reqCh, PUT x))
end

More

fun new x =
 let
 val reqCh = channel()
 val replyCh = channel()
 fun server x =
 (case (recv reqCh) of
 GET => (send(replyCh,x); server x)
 | PUT x’ => server x’)
 in
 (spawn (fn () => server x);
 CELL {reqCh = reqCh, replyCh = replyCh})
 end

Observations

• No mutable storage used. State is in recursion

• Request/reply protocol hidden behind CELL
abstraction. Can’t accidentally recv from
replyCh w/out first sending GET request.

• Synchronous send ensures cell ops are atomic.

Streams as Threads

• Streams can be viewed as suspended
computations, producing values only on
demand.

• Emulate as threads using send and recv
- dataflow network

Streams

• Stream of natural numbers
fun nats_from start =
 let
 val ch = channel()
 fun loop i = (send(ch,i); loop(i+1))
 in
 spawn(fn () => loop start); ch
 end

• recv’s on returned channel yield successive
nats, starting w/ “start”

Summary

• Synchronous fragment of CML provides
- multiple threads of control

- Dynamically-allocated communication channels

- Synchronous send and receive on channels

• Next: Asynchronous CML and first-class
events.

More Primitives
• ‘a event: represent synchronous operations that

return a value of type ‘a when sync takes place
- sync : ‘a event ! ‘a

- recvEvt: ‘a chan ! ‘a event

- sendEvt: (‘a chan * ‘a) ! unit event

• Define:
- fun recv(ch) = sync(recvEvt(ch))
- fun send(ch,v) = sync(sendEvt(ch,v))

• Allow creation of more complex events and then
syncing on them!

Using Events

• More primitives:
-choose: ‘a event list ! ‘a event

-wrap: (‘a event * (‘a ! ‘b)) ! ‘b event

-forever: ‘a * (‘a ! ‘a) ! unit
• forever b f computes f(b),f(f(b)), ..., for side effects

• Define select function:
-fun select(evs) = sync(choose(evs))

Example

• Repeatedly read from channels in either order:
fun add(in1, in2, out) = forever()(fn() =>
 let
 val (a,b) = select [
 wrap(recEvt in1, fn a => (a,recv in2)),
 wrap(recEvt in2, fn b => (recv in1,b))
]
 in
 send(out,a+b)
 end
)

Asynchronous Write

fun asyncWrite(inp, out1,out2) = forever()(fn() =>
 let
 val x = recv inp
 in
 select [
 wrap(sendEvt(out1,x), fn () => send(out2,x)),
 wrap(sendEvt(out2,x), fn () => send(out1,x))
]
 end

CML

• Supports synchronous and asynchronous
message sends (using sync and events)

• Many more features built-up in libraries.

Comparing Mechanisms
• Shared memory concurrency
- Semaphores & locks very low level.

- Monitors are passive regions encapsulating resources
to be shared (mutual exclusion). Cooperation
enforced by wait and signal statements.

• For best results
- Maximize number of variables accessible by only a

single thread

- Use immutable values wherever possible

- Use locks or higher-level constructs to avoid data
races for all other variables.

Comparing Mechanisms

• Distributed Systems
- Everything active in Ada tasks (resources and

processes) and in Scala actors

- CML primitives support synchronous and
asynchronous communications.

• Problems
- Must worry about mailboxes filling w/asynchronous

message passing.

- Data in messages must be copied (OK if immutable)

Why PLs?

• Deeper understanding of principal features of
programming languages

• Explore design space of language features

• Different ways of thinking about programming

• Languages change regularly over time
- Evaluate suitability for intended purpose

- Understand choices in design space

• Implementation issues & efficiency

Topics in Recent PL Meetings

• Fixing/Replacing Javascript (types?)

• Gradual types

• Providing security (esp for mobile devices)

• New languages: Go, Dart, Rust, ...

• Concurrency

Class Topics
• Syntax (formal) and semantics (informal and

formal) of programming language concepts.
- Structure of compilers / interpreters.

- Binding time.

- Variables: static vs. dynamic scope, lifetime, l-values
vs. r-values.

• Run-time structure of programming languages.
- Allocation of storage at run-time: stack & heap.

- Parameter passing mechanisms.

- Storage reclamation - explicit & automatic

Class Topics

• Lambda calculus & functional languages

• OOLs
- Subtype vs. inheritance (mixins, too)

- implementation

• Types in programming languages.
- Available types and their representation.

- Issues in type-checking & type-inference.

- Static vs. dynamic type-checking.

- Problems with pointers.

Class Topics
• Abstract data types
- Information hiding, encapsulation

- Modules

• Control structures
- iterators, exception handling, and continuations.

• Polymorphism - implicit and explicit.

• Concurrency & Parallelism
- Shared memory, semaphores, locks, monitor

- Distributed systems, message passing
• Synchronous vs asynchronous

Final Exam

• Comprehensive, but heavy emphasis on last
half.
- 24 hour take-home.

- Pick up from CS office, 2nd floor Edmunds between
8:30 a.m. - noon and 1 p.m. - 4:30 p.m.

- Available by Monday at 9 a.m.

- Due 24 hours after pickup, but Wednesday at
midnight at latest.

- Submit via submit web page.

How To Study

• Make sure can do all homework on your own

- May be at disadvantage if relied too much on
partners!!

• Review problems at end of chapters

- Lecture notes and in-class notes key

• Study in groups ahead of time.

- Don’t assume you can learn what you need in 24
hours of exam — you can’t!

