
Lecture 27: Concurrency in
Java
CSC 131

Spring, 2019

Kim Bruce

Synchronized blocks

• Control access w/ synchronized blocks:
-synchronized(someObj){...}

- Must hold lock to access. Release when exit.

• Synchronized methods:
- Implicitly use “this” as lock on method body

Shared Variables

• Variables read/written by more than one
process are vulnerable to race conditions.
- Even ++n is vulnerable, as not atomic

- But there are “atomic” types like AtomicInteger

• If multiple threads access the same mutable
state variable you have two options:
- Make the state variable immutable

- Use synchronization whenever accessing the state
variable

Shared Variables

• Visibility of changes:
- If one thread executes synchronized block, and then

another thread enters a block with same lock, then
current values of variables accessible by first are
visible to second when acquires lock

- Without synchronization, no guarantees!
• May reorder, may be in cache or register or ...

• If synchronization not necessary, then label
vble as volatile to force changes to be visible

Conditional Waiting

•Every object has a wait set

•wait(): release lock & pause until another
thread calls notify or notifyAll.

•notify(), notifyAll(): wake up waiting
threads, which try to grab lock
- Can only be used in synchronized code

- Notify wakes up single thread -- arbitrary choice

- NotifyAll wakes up all waiting threads

- Much better than busy-waiting (spin-locks)

Thread States in Java

• New -- declared, but not yet started

• Runnable -- ready to run

• Running -- currently running

• Blocked -- on I/O, wait on monitor, sleep, join

• Dead -- run has ended

Concurrency in Java Monitor in Java

public class BoundedBuffer {
 protected int numSlots;
 private int[] buffer;
 private int takeOut = 0, putIn = 0;
 private int count=0;

 public BoundedBuffer(int numSlots) {
 if(numSlots < 0) {
 throw new IllegalArgumentException(
 "numSlots <= 0");
 }
 this.numSlots = numSlots;
 buffer = new int[numSlots];
 }

From Mitchell, hmwk 14.7

 public synchronized void put(int value)
 throws InterruptedException {
 while (count == numSlots) wait();
 buffer[putIn] = value;
 putIn = (putIn + 1) % numSlots;
 count++;
 notifyAll();
 }

 public synchronized int get()
 throws InterruptedException {
 while (count == 0) wait();
 int value = buffer[takeOut];
 takeOut = (takeOut + 1) % numSlots;
 count--;
 notifyAll();
 return value;
 }
}

Java Critique

• Brinch Hansen - designer w/Hoare of Monitors
hates Java concurrency!
- Doesn’t require programmer to have all methods

synchronized,

- can leave instance variables accessible w/out going
through synchronized methods, it is easy to mess up
access w/concurrent programs.

- Felt that should have had a monitor class that would
only allow synchronized methods.

Java Threads

• Portable since part of language
- Easier to use than C system calls

- Garbage collector runs in separate thread

• Difficult to combine sequential/concurrent code
- Using sequential code in concurrent -- may not work

- Java collection classes have synchronized wrappers!

- Using concurrent in sequential programs bad!
• Useless synchronization

• 10-20% useless overhead

Rough Spots

• Fairness not guaranteed
- Choose arbitrarily among equal priority threads

• Wait set is not FIFO queue
- notifyAll notifies all waiting threads, not necessarily

highest priority, longest-waiting, etc.

• Nested monitor problem can cause deadlock.

Nested Monitor Lockout
Problem

class Stack {
 LinkedListlist = new LinkedList();
 public synchronized void push(Object x) {
 synchronized(list) {
 list.addLast(x); notify();
 } }
 public synchronized Object pop() {
 synchronized(list) {
 if(list.size() <= 0) wait();
 return list.removeLast();
 } }
}

Releases lock on Stack object but not lock on list;
a push from another thread will deadlock

Java 5: util.concurrent

• Doug Lea utility classes
- A few general purpose interfaces

- Implementations tested over several years

• Principal interfaces & implementations
- Sync -- protocols to acquire and release locks,

• e.g. Semaphore w/ acquire, release methods

- BlockingQueue -- classes to insert and delete objects
• support put, take that block (like bounded buffer)

- Executor -- executes Runnable tasks
• You provide control of threads

Java 5 Concurrency Features
class BoundedBuffer { <- array based queue
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();

 final Object[] items = new Object[100];
 int putptr, takeptr, count;

 public void put(Object x) throws InterruptedException {
 lock.lock();
 try {
 while (count == items.length)
 notFull.await();
 items[putptr] = x;
 if (++putptr == items.length) putptr = 0;
 ++count;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
 }

Java 5 Concurrency cont.
public Object take() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0)
 notEmpty.await();
 Object x = items[takeptr];
 if (++takeptr == items.length) takeptr = 0;
 --count;
 notFull.signal();
 return x;
 } finally {
 lock.unlock();
 }
 }
 }

• Advantage: Separate queues for nonEmpty and
nonFull conditions on same lock.

Message Passing: Ada

Ada Tasks

• Synchronous message passing

• Tasks have some features of monitors
- But they are active (have own thread)

• Exports entry names (w/ parameters)

• Entry names have FIFO queues

Accepting an entry

select

 [when <cond> =>] <select alternative>

 {or [when <cond> =>] <select alternative>}

 [else <statements>]

end select

task body Buffer is
 MaxBufferSize: constant INTEGER := 50;
 Store: array(1..MaxBufferSize) of CHARACTER;
 BufferStart: INTEGER := 1;
 BufferEnd: INTEGER := 0;
 BufferSize: INTEGER := 0;
begin
 loop
 select
 when BufferSize < MaxBufferSize =>
 accept insert(ch: in CHARACTER) do
 Store(BufferEnd) := ch;
 end insert;
 BufferSize := BufferSize + 1;
 BufferEnd := BufferEnd mod MaxBufferSize + 1;
 or when BufferSize > 0 =>
 accept delete(ch: out CHARACTER) do
 ch := Store(BufferStart);
 end delete;
 BufferSize := BufferSize -1;
 BufferStart := BufferStart mod MaxBufferSize + 1;
 or
 accept more (notEmpty: out BOOLEAN) do
 notEmpty := BufferSize > 0;
 end more;
 or
 terminate;
 end select;
 end loop
end Buffer;

Caller only blocked in
accept

but only one entry can
be executed at a time

Concurrent ML

Parallellism in Functional
Langs

• Extremely natural.
- When evaluating f(exp1,exp2,exp3), why not evaluate

all in parallel?

- Experts suggest using immutable data for parallelism
to avoid race conditions

- If no side effects then order of evaluation not
relevant. No race conditions!!!

• What could go wrong?

