
Lecture 26: Parallelism &
Concurrency

CSC 131
Spring, 2019

Kim Bruce

Shared Memory

Semaphores

• Three operations:
- InitSem(S: Semaphore; value: integer)

• start w/ initial non-negative value as capacity

- Wait(S: Semaphore) -- grab resource if available
• if S > 0 then S := S-1 else suspend in queue assoc. w/ S

- Signal(S: Semaphore) -- release
• If processes waiting then wake up, else S := S + 1

Protect Critical Section
Pattern of use:

 Wait(S); -- grab token
 {

Critical region
 }

 Signal(S); -- release token

Solve producer-consumer

Producer-Consumer

Suppose have Buffer[0..MaxBuffSize-1]

Main program:
 CreateProcess(Producer,WorkSize); -- create producer
 CreateProcess(Consumer,WorkSize); -- create consumer
 BufferStart := 0; BufferEnd := -1; Count := 0;
 InitSem(NonEmpty, 0) -- semaphore w/0 non-empty slots
 InitSem(NonFull, MaxBuffSize)

 -- semaphore w/MaxBuffSize open slots
 InitSem(MutEx,1) -- semaphore for mutual exclusion
 StartProcesses
end;

Producer-Consumer

Procedure Producer;
begin
 loop
 read(ch); -- generate ch somehow
 Wait(NonFull);
 Wait(MutEx);
 BufferEnd := (BufferEnd + 1) % MaxBuffSize;
 Buffer[BufferEnd] := ch;

Count := Count+1;
 Signal(MutEx);
 Signal(NonEmpty);
 end loop;
end;

Producer-Consumer

Procedure Consumer;
begin
 loop
 Wait(NonEmpty);
 Wait(MutEx);
 ch := Buffer[BufferStart];
 BufferStart := (BufferStart + 1) % MaxBuffSize;
 Count := Count-1;
 Signal(MutEx);
 Signal(NonFull);
 Write(ch) -- use ch as desired
 end loop
end;

Questions

• Why is Mutex semaphore needed?

• What happens if interchange order of Wait’s in
each?

• Semaphores very low level -- easy to make
mistakes!

Monitors

• High level concept due to Per Brinch Hansen
- originally developed for Simula

• Provide ADT w/condition variables, each of
which has an associated queue

• Suspend (wait) enqueues process while continue
dequeues processes

Producer-Consumer w/ Monitor

type buffer = monitor;

var store: array[0..MaxBuffSize-1] of char;
 BufferStart, BufferEnd, BufferSize: integer;
 nonfull, nonempty: queue;

begin (* initialization *)
 BufferEnd := -1;
 BufferStart := 0;
 BufferSize := 0
end;

Producer-Consumer w/ Monitor
procedure entry insert(ch: char);
begin
 if BufferSize = MaxBuffSize then suspend(nonfull);
 BufferEnd := (BufferEnd + 1) % MaxBuffSize;
 store[BufferEnd] := ch;
 BufferSize := BufferSize + 1;
 continue(nonempty)
end;

procedure entry delete(var ch: char);
begin
 if BufferSize = 0 then suspend(nonempty);
 ch := store[BufferStart];
 BufferStart := (BufferStart + 1) % MaxBuffSize;
 BufferSize := BufferSize -1;
 continue(nonfull);
end;

Producer-Consumer w/ Monitor
type producer = process (b: buffer);
var ch: char;
begin
 while true do begin
 read(ch);
 b.insert(ch)
 end;
end

type consumer = process(b: buffer);
var ch: char;
begin
 while true do begin
 b.delete(ch);
 write(ch)
 end
end;

var p: producer;
 q: consumer;
 b:buffer;
begin
 init b,
 p(b),
 q(b)
end.

Java
Parallelism & Concurrency

Before Parallelism

• Program on single processor:
• One call stack (w/ each stack frame holding local variables)

• One program counter (current statement executing)

• Static fields

• Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

• New story:
• A set of threads, each with its own call stack & program

counter

• No access to another thread’s local variables

• Threads can (implicitly) share static fields / objects

• To communicate, write somewhere another thread reads

Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…

…

Threads, each with own
unshared call stack and current
statement (pc for “program
counter”) local variables are
numbers/null or heap references

Heap for all objects and
static fields

Parallel Programming in Java

• Creating a thread:
1. Define a class C extending Thread

• Override public void run() method

2. Create object of class C
3. Call that thread’s start method

• Creates new thread and starts executing run method.
• Direct call of run won’t work, as just be a normal method call

• Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Parallelism Idea

• Example: Sum elements of an array
• Use 4 threads, which each sum 1/4 of the array

• Steps:
• Create 4 thread objects, assigning each their portion of

the work

• Call start() on each thread object to actually run it

• Wait for threads to finish

• Add together their 4 answers for the final result

 ans0 ans1 ans2 ans3
 +
 ans

First Attempt
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // use start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

What’s wrong?

Correct Version
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 return ans;
} See program ParallelSum

Thread Class Methods

• void start(), which calls void run()

• void join() -- blocks until receiver thread done

• Style called fork/join parallelism
- Code on previous slide generates error message as

join can throw exception 
 InterruptedException

• Some memory sharing: arr field

• Later learn how to protect using synchronized.

Actually not so great.

• If do timing, it’s slower w/ small arrays than
sequential!!

• Want code to be reusable and efficient as core
count grows.
- At minimum, make #threads a parameter.

• Want to effectively use processors available
now
- Not being used by other programs

- Can change while your threads running

Divide & Conquer

• Divide in half, w/ one thread per half.
- Each half further subdivided w/ new threads, etc.

until down to single elements

- Depth is O(log n), which is optimal

- Then total time w/numProc processors 
 O(n/numProc + log n)

+ + + + + + + +

+ + + +

+ +
+

straight-line code cost
in step 1

each layer is O(1) in parallel

In practice

• Creating all threads and communication
swamps savings so
- use sequential cutoff about 1000

- Don’t create two recursive threads
• one new and reuse old.

• Cuts number of threads in half.

EfficentDivideConquerParallelSum

Even Better

• Java threads too heavyweight -- space and time
overhead.

• ForkJoin Framework solves problems

• Added in Java 7.

To Use Library
- Create a ForkJoinPool

- Instead of subclass Thread, subclass RecursiveTask<V>
(or RecursiveAction)

- Override compute, rather than run

- Return answer from compute rather than instance vble

- Call fork instead of start

- Call join that returns answer

- To optimize, call compute instead of fork (rather than
run)

- See ForkJoinFrameworkDivideConquerParallelSum

Handling Concurrency in Java

See ATM example

