
Lecture 24: Classes, Traits &
Inheritance

CSC 131
Spring, 2019

Kim Bruce

Dialects in Grace

• Can add features as well as remove.

- Add library

• Checker can enforce restrictions on code

- Grace code running on AST rep of program

- Beginning Programmer (use only simple constructs)

- RequiredTypes (all id’s must be associated with type)

- Static type checker.

Grace Details

- No parens needed w/parameterless methods

- No parens if parameter bounded by “” or {}

- Must insert parens for most precedence

- Use blocks for code evaluated variable number of
times

Traits

Inheritance

• Subclass “inherits” all methods and features
from superclass.

- Can override inherited methods

- Can add new methods & features

• Java interfaces can extend multiple interfaces

- Classes can’t

Multiple Inheritance

• Appealing idea, but no good designs/
implementations (Eiffel’s is nicest)
- “Multiple inheritance is good, but there is no good

way to do it.” [Alan Snyder paraphrase]

• Java used interfaces to get some of benefits

• Traits are good intermediate approach.
- Related to “mixins” from Flavors (& hence CLOS)

Diamond Problem

• For methods

- m defined in A, overridden in B,C

• For instance variables

• Methods easier — select one, explicitly or
implicitly, call other with extra syntax

• Instance variables harder: Need to keep state
around for methods. Duplicate or share?

- Initialization still problem! What order?

A

D

CB

Traits in Grace

• Prime use case: Combine dialects

• Avoid problems with variables

• Traits like classes, but no explicit state

• Adapt solution proposed for Smalltalk

- https://rmod.inria.fr/archives/papers/Blac03a-
OOSPLA03-TraitsHierarchy.pdf

What is a trait?

• Traits are objects that directly contain no field
declarations, inherit statements, or executable
code.

• Traits can contain methods, types, traits, and
classes

• Defined by using keyword trait:

- trait emptiness {method isEmpty {size == 0}; … }

- objects w/certain restrictions

Traits in Grace

• If any ambiguity, programmer must select
which method to inherit

- Typically by excluding redundant ones

• Can gain access to original inherited methods

- alias newName(_) is oldMeth(_)

Inheritance in Grace

• Class can inherit from one superclass (if none,
then by default graceObject)

• Class can use any number of traits

• See examples in traits.grace

• Traits can be used as “mixins”

- Require clause states what is needed to complete
them.

Conflicts!

• What if there are conflicts?

- See Conflicts.grace

- trait overrides subclass

- if traits conflict then must exclude all but one or
override in new subclass

History of Traits

• Originally in Self (1986): object-based language
using delegation (rather than inheritance)

• Theoretically nicer versions proposed for
Smalltalk and implemented in Scala

Attaining Grace

• Seems to work well with novices

- Grades generally higher than with Java

- Higher percentage persist in follow-up courses.

• Nearly impossible to convince novices it is a
good idea!!

Contributions of Grace

• Simple w/ minimal “accidental” complexity

• Support for blocks as lexical closures
(anonymous function)

- Define new control constructs

• Dialects very helpful

• Optional typing not as useful as expected.

Evaluating OOLs

Evaluation of OOL’s

• Pro's (e.g., with Eiffel and Java)
- Good use of information hiding. Objects can hide their

state.

- Good support for reusability. Supports generics.

- Support for inheritance and subtyping provides for
reusability of code.

- Great support for use of frameworks

• Plug in code to provide behavior

• Subject-Observer, etc.

Evaluation of OOL’s

• Con's
- Loss of locality.

- Type-checking too rigid, unsafe, or requires link time
global analysis. Others require run-time checks.

- Semantics of inheritance is very complex.
• Small changes in methods may make major changes in

semantics of subclass.

• Must know definition of methods in superclass in order to
predict impact on changes in subclass. Makes provision of
libraries more complex.

- Weak or non-existent support of modules.

Concurrent & Parallel
Programming Constructs

Parallelism vs Concurrency

• Parallel programming is about using additional
computational resources to produce an answer
faster.

• Concurrent programming is about correctly
and efficiently controlling access by multiple
threads to shared resources.
- Includes providing reasonable response times.

Definitions by Dan Grossman

Why Important

• Speed-ups limited w/single processors
- dual/quad/oct processors now standard

• Required for distributed processing

• Concurrency required for event-driven
programming

Processes vs Threads

• Processes are independent, process may be
composed of multiple threads

• Processes contain separate state info, while
threads w/in process share same state/memory

• Context switching between threads much
cheaper than between processes.

Flavors of Concurrency
• Multiprogramming -- interleaving on 1 computer

• Multiprocessing -- parallel computation

• Codes:
- M - Multiple

- S - Single

- I - Instruction (now P for Program)

- D - Data

• MIMD most interesting from CS point of view

Shared Memory vs
Distributed Models

• Threads/processes need to
- Synchronize with other threads

- Communicate data

• Shared Memory:
- Synchronization of memory accesses

• See ATM1/2 programs

- Mutual Exclusion: Reader-Writer problem

• Distributed
- Asynchronously send and receive messages

Problems OS Responsibilities

• Create and destroy processes

• Schedule processes on one or more processors

• Implement mutual exclusion
- for shared memory

• Create & maintain communication channels
- for distributed

Key Concepts in Conflicts
• Critical Section
- where two processes can access shared resource

• Race condition
- answer depends on order of execution of other events

• Mutual exclusion
- allow only one process in critical section

• Deadlock
- no process can proceed because cannot obtain needed locks

Dining Philosophers

demo

