
Lecture 24: OO Languages: 
Grace
CSC 131

Spring, 2019

Kim Bruce

Eiffel

• Introduced in 1985 by Bertrand Meyer

• Design goals:
- Promote clear and elegant programming.

- Support object-oriented design, including “design-by-
contract”

• Design-by-contract is most important impact

Design by Contract

• Treat method calls as contractual obligations
- Client must ensure that preconditions of the method 

are met when sending a message.

- If client meets the preconditions then the routine 
guarantees that the postconditions will hold on exit.

- Both parties may also guarantee that certain 
properties (the class invariant) hold on entrance to 
methods and again on exit.

Class Definition
class
    HELLO_WORLD
create
    make
feature
    make
        do
            print ("Hello, world!%N")
        end
    -- other method defs
invariant
    -- class invariant
end



Method Definition
connect_to_server (server: SOCKET)
      -- Connect to a server or give up after 10 attempts.
    require
        server /= Void and then server.address /= Void
    local
        attempts: INTEGER
    do
        server.connect
    ensure
      connected: server.is_connected
    rescue
        if attempts < 10 then
            attempts := attempts + 1
            retry
        end
    end

Inheritance & Assertions

• What changes can you make in preconditions 
and postconditions of method when override?

• Need to maintain contract as masquerades.

• Answer is homework question!

Static Typing Issues

• In Eiffel subclass, can
- specialize type of instance variables

- specialize return type of methods

- specialize parameter type of methods

• First & third lead to errors

• Several proposals made to fix, including whole-
program analysis
- None appear to have been implemented

like Current
class LINKABLE [G]

feature
   item: G;              
   right: like Current;  

   putRight (other: like Current) is
      do
         right := other
      ensure
         chained: right = other
      end;

end -- class LINKABLE

Type like Current is type of class



class BILINKABLE [G] inherit LINKABLE [G]
           redefine
              putRight
           end
           
feature 
   left: like Current;   -- Left neighbor

   putRight (other: like Current) is
         -- Put `other' to right of current cell.
      do
         right := other;
         if (other /= Void) then
            other.simplePutLeft (Current)
         end
       end;

    putLeft (other: like Current) is ...
           

Very Flexible
• Define
- class LINKEDLIST[NODE -> LINKABLE] ...

- Can instantiate with LINKABLE to get singly-linked 
list or BILINKABLE to get doubly-linked list.

• Can’t do in Java or C++!
- Why?

• Type Unsafe 
- See next week’s homework – implicit change of parameter type

- Subclass, but not subtype

like Java extends

Grace

Grace

• New language designed for teaching novices

- Under development at Pomona, Portland State, and 
Victoria University, Wellington, NZ

- Several published papers, nearly complete 
implementations

• Goal: Integrate current ideas in programming 
languages into a simple, general-purpose 
language aimed at novices.



Why New Language for 
Novices?

• Most popular languages too complex & low-
level.

• Complexity necessary for professionals, but ...

- “Accidental complexity” of language can overwhelm 
“essential complexity”.

- Minimize language complexity so can focus on 
programming/design complexity.

Existing Languages Woefully 
Out-of-date

• C (1972), C++ (1983), Python (1989), Java (1994)

• History of pedagogical languages:

- Basic, Logo, Pascal

- ... but not recently!

- Miniworlds different: Alice, Karel the Robot, Greenfoot

Java Problems

•  public static void main(String [] args)

• Primitives versus objects, “==” versus 
“equals”

• Flawed implementation of generics

• Static versus instance – on variables & 
methods

• float versus double versus int versus long

�15

>>> class aClass:
    """A simple example class"""
    val = 47
    def f(self):
        return 'hello world'

>>> x = aClass()
>>> x.value = 17
>>> x.val
47
>>> x.f()
'hello world'

Python Problems

disappearing self?

no information hiding

uncaught typos

�16

Fine for scripting, but not large-scale software development



What if we could have:

• Low syntactic overhead of Python, but 
with 
• information hiding
• consistent method declaration & use
• required variable declarations
• optional (& gradual) type-checking

• direct definition of objects

• first-class functions

�17

Hello World in Grace:

print "hello world"

�18

 Objects
def mySquare = object {
      var side := 10
      method area { 
           side * side 
      }
      method stretchBy(n) {
           side := side + n
      }
}

Defaults: instance variables and constants are 
confidential (protected), methods are public

Annotations can override the defaults
�19

Consistent 
indenting is 

required!
But no 

semicolons.

Objects contain declarations
• definitions:  

- def x:Number = 17

• variables: 

- var y: String := “hello”

• methods:  

- method m(w:Number,z:String) -> Done {...}

• types:

- type Point = interface {x -> Number 
                                       y -> Number ...}

Types are optional!



Typed Objects
type Square = interface {
      area -> Number
      stretchBy(n:Number) -> Done
}

def mySquare: Square = object {
      var side: Number := 10
      method area -> Number { 
            side * side 
      }
      method stretchBy (n:Number) -> Done {
            side := side + n
      }
}

�21

like Void

Classes

class squareWithSide (s: Number) -> Square {
      var side: Number := s
      method area -> Number { 
          side * side 
      }
      method stretchBy (n:Number) -> Done {
           side := side + n
      }
      print "Created square with side {s}"
}

Type annotations can be omitted or included

• Classes take parameters and generate objects

�22

Or Object w/Factory Method

method squareWithSide (s:Number) -> Square {
   object{
      var side: Number := s
      method area -> Number { 
         side * side 
      }
      method stretchBy(n:Number)-> Done {
         side := side + n
      }
      print "Created square with side {side}"
   }
}

�23

What is type of square?

Blocks

def double = {n -> n * n}
double.apply(7)  // returns 49
// block is implicitly object w/apply method

def nums = aList.from(1)to(100)
def squares = nums.map {n -> n * n}

�24

• Syntax for anonymous functions
function

multipart 
method 
names

Blocks can take 0 or more parameters



Blocks

while {boolExp} do { someStuff }

squares.forEach {n ->
        if (n.isEven) then {print n}
}

• Blocks make it simple to define new “control 
structures” as methods

�25

block, 
evaluated repeatedly

boolean 
expression, evaluated 

once

Parentheses can be dropped if argument bounded by {} or “”
No parens needed for parameterless methods

Error Actions

• Grace encourages the use of blocks to specify 
error actions or default values:

var x := table.at(key)ifAbsent{  
return unknown(key)  

         }

Running Grace

• Compiler generates Javascript

• Use web-based editor/compiler at  
http://web.cecs.pdx.edu/~grace/ide/

Grace on the Web

• Go to: 
• http://web.cecs.pdx.edu/~grace/ide/

• Click on document icon with plus:        to 
start new file or click on up arrow to load 
existing program.

• “Run” button under edit window will compile  
and execute code. 

• Right-click down arrow (& “Save link as…”) to 
save.



Sample Grace Code

• See ComplexNumbers.grace

Avoid Hoare’s  
“Billion Dollar Mistake”

• No built-in null

• Accessing uninitialized variable is error

• Replace null by:
• sentinel objects, or
• error actions

�30

Sentinel Objects

A real object, tailored for the situation, e.g.:

def emptyList = object {
    method asString {"<emptyList>"}
    method do(action) {}
    method map(function) {self}
    method size {0}
}    

name for object 
being defined

Sentinel Objects
Simplifies code, eliminates testing for null

class aListHead(fst) tail (rest) {
    method asString {"({fst}:{rest})"}
    method head {fst}
    method tail {rest}
    method do(action) {
        action.apply(head)
        tail.do(action)
    }
    method map(function) {
        aListHead (function.apply (head))
                   tail (tail.map (function))
    }
    method size {1 + tail.size}
}

boolean 
expression, evaluated 

once
no conditional code



Error Actions

• Grace encourages the use of blocks to 
specify error actions or default values:

var x := table.at(key)ifAbsent{  
return unknown(key)  

         }

�33

Works great for listeners as well!

Pattern Matching

match(myVal)  
    case{ n: Number -> "The number {n} seen"}  
    case{ s: String -> "The string "++s++" seen"}  
    case{ true: Boolean -> "This is true!"}

• Provides type-safe switch/case

�34

Variant Types

type NumOrString = Number | String
var x: NumOrString := if (…) then (…) else (…)
match(x)
   case {x’: Number -> “value of x is {x’}}
   case {s: String -> “value of x is” ++ s}

val: A | B iff val:A or val:B

Allows elimination of null

�35

Modules in Grace

• Code in separate files imported as though in an 
object with given name:

- import “myfile” as libName

-         libName.m(…)

•


