
Lecture 23: OO Languages:
Java & Eiffel

CSC 131
Spring, 2019

Kim Bruce

Papers

• Growing a Language by Guy Steele

- Not too big, not too small, but growable

• Design Principles behind Smalltalk

Java Design Goals

• Portability across platforms

• Reliability

• Safety (no viruses!)

• Dynamic Linking

• Multithreaded execution

• Simplicity and Familiarity

• Efficiency

Java
• Original implementations slow
- Compiled to JVML and then interpreted

- Now JIT

- Garbage collection

• Safety - 3 levels:
- Strongly typed

- JVML bytecode also checked before execution

- Run-time checks for array bounds, etc.

• Other safety features:
- No pointer arithmetic, unchecked type casts, etc.

- Super constructor called at beginning of constructor

Exceptions & Subtyping

• All non-Runtime exceptions must be caught or
declared in “throws” clauses
- void method readFiles() throws IOException {...}

• Suppose m throws NewException.

• What are restrictions on throwing exceptions
if m overridden in subclass? Masquerade!

Simplify from C++
• Purely OO language (except for primitives)

• All objects accessed through pointers
- reference semantics

• No multiple inheritance -- trade for interfaces

• No operator overloading

• No manual memory management

• No automatic or unchecked conversions

Interfaces

• Originally introduced to replace multiple
inheritance

• Allows pure use of subtype polymorphism w/
out confusing with implementation reuse.

• Slower access to methods as method order not
guaranteed

Encapsulation
• Classes & interfaces can belong to packages:

package MyPackage;

public class C ...

• If no explicit package then in “default” package

• public, protected, private, “package” visibility

• Class-based privacy (not object-based):
- If method has parameter of same type then get access

to privates of parameter

Problems w/Packages
• Generally tied to directory structure.

• Anyone can add to package and get privileged
access

• All classes/interfaces w/out named package in
default package (so all have access to each
other!)

• No explicit interface for package

• Abstraction barriers not possible for interfaces.
Discourages use of interfaces for classes.

Abstraction barriers not monotonic
package A;
public class Fst {
 void m(int k){System.out.println("Fst m: "+k);}
 public void n(){System.out.print("Fst n: "); m(3);}
}

package B;
import A.*;
public class Snd extends Fst{
 public void m(int k){System.out.println("Snd m: "+k);}
 public void p(){System.out.print("Snd p: "); m(5);}
}

package A;
import B.*;
public class Third extends Snd{
 public void m(int k){System.out.println("Third m: "+k);}
}

Abstraction barriers not monotonic
import A.*;
import B.*;
public class Fourth{
 public static void main(String[] args){

Fst fst = new Fst();
fst.n();

Snd snd = new Snd();
snd.n();
snd.m(5);

Third third = new Third();
third.n();
third.m(7);
third.p();

 }
}

Fst n: Fst m: 3

Fst n: Fst m: 3 // ????  
Snd m: 5

Fst n: Third m: 3 
Third m: 7 
Snd p: Third m: 5

Warning : Method void m(int) in class B.Snd does not override the
corresponding method in class A.Fst. If you are trying to override this
method, you cannot do so because it is private to a different package.

Goals of Java 5
• Ease of Development
- Increased Expressiveness

- Increased Safety

• Scalability and Performance

• Monitoring and Manageability
• Desktop client
• Minimize Incompatibility
- No changes to virtual machine

- Only one new keyword (enum)

Java 5

• Generics
• Enhanced for loop (w/iterators)
• Auto-boxing and unboxing of primitive types
• Type-safe enumerated types
• Static Import
• Simpler I/O

Generics Finally Added

• Templates done well (unlike C++)
- Type parameters to classes and methods.
- Type-checked at compile time.
- Allows clearer code and earlier detection of errors.
- Biggest impact on Collection classes.

• Limitations
-Virtual machine has not changed.
-Translated into old code with casts
-Casts and instanceof don't work correctly
-Can’t construct arrays involving variable type.

Constrained Genericity

• Recall the way we constrained type params in Clu:

sorted_bag = cluster [t : type] is create,
insert, ...

 where t has
 lt, equal : proctype (t,t) returns (bool);

• How can we model this in Java 5?

Constraining Genericity

interface Comparable {

 boolean equal(Comparable other);
 boolean lessThan(Comparable other);

 }

 class BST <T extends Comparable> { ... }

class OrderedRecord implements Comparable {
 ... // inst vble declarations

boolean lessThan(Comparable other) {
 ???
}

 }

F-Bounded Quantification

• Mitchell et al introduced F-bounded
quantification
interface Comparable<T> {

 boolean equal(T other);
 boolean lessThan(T other);

 }

 class BST<T extends Comparable<T>> { ... }

class OrderedRecord
 implements Comparable<OrderedRecord> {

boolean lessThan(OrderedRecord other) {
 if (...)...
}

 }

F-Bounded Quantification
• Seems to solve the problem, but sometimes too

complex to write easily.
public class ComparableAssoc

 <Key extends Comparable<Key>, Value>

 implements Comparable<ComparableAssoc<Key,Value>> {

• Not preserved by subclasses.

- Suppose C extends Comparable<C> and D extends C

- Then D extends Comparable<C> but not Comparable<D>

• See Bruce, “Some Challenging Typing Issues in Object-
Oriented Languages” on my web pages under recent
papers.

Also Polymorphic Methods
interface Visitor<T> {
 T visitNumber(int n);
 T visitSum(T left, T right);
}

abstract class Expr {
 public <T> T accept(Visitor<T> v);
}

class Number extends Expr {
 private int n;
 public Number(int n) { this.n = n; }
 public <T> T accept(Visitor<T> v) {
 return v.visitNumber(this.n); }

}

Java Wild Cards

• Four ways to specify type parameters :
T : fixed type
? extends T : some extension of T,
? super T : some type that T extends,
? : any type

• Examples:
C<? extends T>: can be C<U> for any U extending T.

C<? super T>: can be C<U> for any U s.t. T extends U.

C<?>: can be C<U> for any U.

Example

• In class TreeSet<E>:
- boolean addAll(Collection<? extends E> c)

- constructor: TreeSet(Comparator<? super E> c)

- Comparator <? super E> comparator()

- where interface Comparator<T> has method 
 int compare(T o1, T o2)

In libraries almost all occurrences are of form ? extends E or just ?,
and are in parameter position.

C<? extends T> ≡ ∃(t<:T). C<t>

C<? super T> ≡ ∃(t:>T). C<t>

C<?> ≡ ∃t. C<t>

Compare with
C<t extends T> ≡ ∀(t<:T). C<t>

What do wildcards mean?

• If ds : List<? extends T>  
≡ ∃t extends T.List<t>  
then can access elements, but not insert.

• More carefully, if List<T> has methods
get: () → T, set: T → void

then
ds.get() will return value of type T, but
ds.set(o) always illegal, no matter what type of o.
I.e., ds is read-only

Wildcard Restricts Usage

Covariant occurrences of T are OK, contravariant are not!

Restrictions Confusing

• ?s are not equal to each other or even itself:
public void twiddle(Stack<?> s) {
 if (!s.empty())
 s.push(s.pop());
}

• Illegal, because type of s.pop() not recognized
as same as argument type of s.push(...).

• Can’t even write swap!
• Can fix by calling polymorphic method where

type given a name.

Avoiding Wildcards

• Recall from logic, if B does not contain t then
∀t.(A(t) → B) ≡ (∃t.A(t))→ B

• Thus by “Curry-Howard equivalence”
<T extends C> void m(List<T> aList){...}

 is equivalent to
void m(List<? extends C> aList){...}

• However, there is no equivalent for return type or
types of fields.

Are Wild-Cards Worth It?

• They show up in all of the Collection classes:
public ArrayList(Collection<? extends E> c)

public void addAll(Collection<? extends E> c)

public void removeAll(Collection<?> c)

• Can be replaced by similar:
public ArrayList<T extends E>(Collection<T> c)

public <T extends E> void addAll(Collection<T> c)

public <T> void removeAll(Collection<T> c)

• Java with wildcards has undecidable & unsound type system
(can convert any type into any other type)

Java Verifier

Java verifier

• Many checks involving format, legality of
names, correctness of final declarations, etc.

• Most important is bytecode verifier

• Why verify?
- How was code constructed?

• Class file contains version info, constant pool,
info about class & superclasses, info about
fields and methods, debugging info.

Bytecode Verifier

• Ensures that at any point in code, no matter how
got there:
- Stack is always same type and contains same types of

objects.

- No register accessed unless known to contain value of
appropriate type

- Methods are called w/appropriate arguments

- Fields are modified w/values of appropriate type

- All opcodes have appropriate type args on stack & in
registers.

Java Verifier

• Originally had holes, but now has been given
formal specification which has been proven
correct.

• New version for Java 6 allows speedier
verification as type info can be provided
in .class file

• Unfortunately browser plug-ins compromised:
- https://www.makeuseof.com/tag/web-just-became-secure-google-

drops-support-java/

Eiffel

• Introduced in 1985 by Bertrand Meyer

• Design goals:
- Promote clear and elegant programming.

- Support object-oriented design, including “design-by-
contract”

• Design-by-contract is most important impact

Features

• Purely object-oriented

• Multiple inheritance

• Automatic memory management

• Assertions integral part of language

• Static typing (but not type-safe, alas)

Design by Contract

• Treat method calls as contractual obligations
- Client must ensure that preconditions of the method

are met when sending a message.

- If client meets the preconditions then the routine
guarantees that the postconditions will hold on exit.

- Both parties may also guarantee that certain
properties (the class invariant) hold on entrance to
methods and again on exit.

Class Definition
class
 HELLO_WORLD
create
 make
feature
 make
 do
 print ("Hello, world!%N")
 end
 -- other method defs
invariant
 -- class invariant
end

Method Definition
connect_to_server (server: SOCKET)
 -- Connect to a server or give up after 10 attempts.
 require
 server /= Void and then server.address /= Void
 local
 attempts: INTEGER
 do
 server.connect
 ensure
 connected: server.is_connected
 rescue
 if attempts < 10 then
 attempts := attempts + 1
 retry
 end
 end

