
Lecture 21: OO Languages
CSC 131

Spring, 2019

Kim Bruce

OO Keywords

• Object

• Message

• Class

• Instance

• Method

• Subtype

• Subclass

Objects

• Internal data abstractions

• Hide representation

• Have associated state

• Methods have access to its state 

• Self

Object Types

• Allow objects to be first class

• Allow use in assignment, parameters, 
components of structures

• Allow objects to be classified via subtyping 



Classes

• Templates for creation of objects
- Initialization code

- Contain definitions for all methods

• Can modify or extend by creating subclasses.

• Can be used as types

Dynamic Method Invocation 

• Each object responsible for keeping track of 
implementation of its own operations

• When evaluate o.m(...) at run-time, code run 
depends on operations associated with o.

• Static overloading is different
- resolved at compile time.

Multi-methods

• Code executed depends on more than one 
argument.

• Example m(a,b) -- choice of code to be 
executed depends on run-time types of a and b.

• CLOS is example of such language

• Behavior and implementation quite different 
from single-dispatch languages.

Subtyping

• Already discussed

• Relation between interfaces, independent of 
implementations



Subclasses

Support incremental modification of code.

class Point
   var
      x = 0: Int;
   methods
      fun getx():int {return x}
      proc move(dx: int) 
          {x := x + dx}
end class;

Subclasses

subclass Colorpoint of Point 
                      modifying move
   var
      color = blue: ClrType

   methods
      fun getColor():ClrType {return color}

      proc setColor(nuColor: ClrType) 
           {color := nuColor}

      proc move(dx: int) {super.move(dx); 
                          color := red}
end class;

 Static Overloading vs  
Dynamic Dispatch

• Dynamic dispatch - object receiving message 
determines which  code will be executed.  
- Determined at run-time.

• Static overloading occurs when an object 
supports two or more implementations of a 
message name -- generally w/different types.  
- Determined at compile-time.

- e.g., moveTo(x,y)  &  moveTo(locn)

• Confusion when coexist in same language.

Overloading vs Dynamic 
Dispatch

class C { …
fun eq(other: Ctype):boolean {…}  (1)

}
class SC of C modifying eq { … 
fun eq(other: Ctype):boolean {…}  (2) override
fun eq(other: SCtype):boolean {…} (3) overload

}

c.eq(c); c.eq(c’); c.eq(sc);
c’.eq(c); c’.eq(c’); c’.eq(sc);
sc.eq(c); sc.eq(c’); sc.eq(sc);

c,c’: Ctype; sc: SCtype;

c = new C;  c’ = new SC; sc = new SC;

What code is executed?



Type Restrictions

Type systems limit changes in method types in 
subclasses.

class C
      ...
   methods
      clone(): CType {...};
      equals(other: CType) {...};
end class

How can we change these types in subclasses?

More flexible subclasses

Why restrict changing types in 
subclasses?

Methods can be mutually recursive!

class Example
      :
methods

    proc m(s:S,...) {... self.n(s) ...}
    fun n(x: S): T {...}
end class;

subclass SubExample of Example modifying n
      :
  methods
    fun n(x: S’): T’ {...}
    proc newMethod(...){...}
end class;

What must be relationship of new type of n  
to old to preserve type safety?

Changing Types in Subclasses

Subtype will always be fine!
I.e., S <: S' and T' <: T  equivalently, S’ → T’ <: S → T

E.g., can change return type of clone in subclass to 
type of objects from subclass.

Cannot specialize parameter types in equals
Binary methods

If subclass updates method types so they are 
subtypes of original then type-safe.

If restricted in this way, subclasses will always 
generate subtypes.



What about instance 
variables?

Instance variables can be values and receivers 
- No subtypes!

If Circle has instance variable center: Point, 
ColorCircle's center must have same type.

Hard to redefine getCenter in ColorCircle, even if legal!

Important problem in OO language design and 
type theory

OO Languages
• Simula 67

• Smalltalk-72, -74, ... -80

• C++, Object Pascal, Object Cobol, ...

• Eiffel, Sather

• Java

• Scala

• Dart, Grace?

Simula 67

Simula 67

• First OO language

• You read in text

• Also added coroutines

• Use of “inner” rather than “super” in 
constructors



Inner

Class A; Begin startA; Inner; endA End;  

A Class B; Begin startB Inner; endB End;  

B Class C; Begin startC Inner; endC End;  

Ref(C) X;

X :- New C;

• Results in execution of:
startA startB startC endC endB endA

• Beta supports similar in all methods & classes

Smalltalk

Smalltalk

• New features:
- Everything is an object, including classes

- No operations -- only message-sending

- Used to build customizable environment

- Abstraction -- private instance variables, public 
methods

• Dynamically typed

Dynabook

• Laptop computer -- Alan Kay 1970’s 
- Turing award 2003

• Proposed in 1970’s - aimed at children & adults
- Neal Stephenson’s “The Diamond Age or, a young 

lady’s illustrated primer” is the next step

• Programmable environment

• Smalltalk as OS and programming language



Syntax

• n <- 3+4

- send “+” message to 3 w/param 4 and insert in n

•n between: 10 and: 100

- send “between: and:” message to n w/params 10, 100

•[ :params | <message-expressions> ]

- lexical closure - equiv to lambda expression

- positiveAmounts :=  
                     allAmounts select: [:amt | amt isPositive]

Smalltalk class
class name              Point 
super class             Object
class var                 
instance var             x   y 
class messages and methods 
!...names and code for methods..." 
 instance messages and methods 
moveDx: dx Dy: dy ||
   x <- dx+x
   y <- dy + y
x
 ^ x
...

Commands

• Loops example:
1 to:10 do:[:i| 
  Transcript show: (i asString). 
].

• Conditional
- (x>0) ifTrue:[ x:=x+1. ] ifFalse:[ x:=0 ].
- true and false are special values like 
lambda calculus encodings

Run-time representations

2

3

class

x

y

Point object superclass
template
methods

x
y

Point class

Method dictionary
newX:Y:

...
move

code
code
code



Dynamic Method Invocation

• Start with object’s class and search up 
superclasses.

• When call method inside, start search from self 
again.

• Most other OO languages do not implement dmi in 
this way -- too inefficient!

Key ideas of Smalltalk

• Everything is an object

• Information hiding - instance variables 
protected.

• Dynamic typing, so subtyping determined by 
whether can masquerade -- “message not 
understood”

• Inheritance distinct from subtyping
removeFirst, removeLast, removeFirst:, and

removeLast: defined for Intervals.
removeFirst, removeLast, removeAtIndex:

and removeAllSuchThat: defined for LinkedList
after: and before: moved to SequenceableCol-

lection
addFirst:, addLast:, add:before:, add:after:,

addAllFirst:, addAllLast:, and add:beforeIndex:
canceled from SortedCollection.

5.2   Extending the Analysis
The process for analyzing class libraries can be

applied to other parts of the Smalltalk.  One area that
would benefit from examination is the stream classes.
These classes are conceptually similar to collections,
but are implemented in an entirely different part of the
class system.

A Stream is a destination or source of values.
Streams are part of the collection classes but are not
well integrated with the other collections.  This sec-
tion discusses how they could be unified with other
collections
ReadStream
Representation R : V*

isEmpty ρ = ( #R = 0 )

#R > 0 next R' = ρ•R

#R > 0 peek ρ = R[1]

The next method has the same specification as
the removeFirst method in OrderedCollection.  The
fact that it removes the first element instead of the last
is merely an artifact of the specification; it is not vis-
ible to the client.  Similarly, peek corresponds to the
first method.
WriteStream
Representation R : V*

nextPut: x R = R'•x

contents ρ = R

The method nextPut: has the same specification
as addLast: in OrderedCollection, but is indepen-
dent of the actual ordering used.  Renaming the  next-
Put: to be  add:   allows for more polymorphism;
WriteStream then conforms to ExtensibleCollec-
tion.

6   Interfaces Versus Inheritance
Figure 5 shows the Smalltalk inheritance hierar-

chy (in bold) superimposed on the protocol hierarchy
of Figure 4 (dotted lines).  This is a concrete illustra-
tion of the difference, even at a syntactic level, be-
tween inheritance and conformance [CHC90, Syn-
der86].  There are two cases where the hierarchy and
protocol hierarchies are in direct conflict: Dictionary
and SortedCollection. Dictionary inherits from Set
but its protocol does not conform to Set’s.  This is
because Dictionary cancels several of Set’s methods.
SortedCollection has a similar pattern of inheritance
without conformance.

Dictionary

Collection

Bag

Set

 Sequenceable  
Collection

Mapped
Collection

 Array 

Ordered
Collection

& 
LinkedList

Sorted
Collection

Interval

Indexed
Collection

Updatable
Collection

Internally
Removable
Collection

Extensible
Collection

Poppable
Collection

  String  

Figure 5: Interfaces versus Inheritance

Another significant deviation centers around Se-
quenceableCollect ion , which has inheritors
(subclasses) with various combinations of protocols
unrelated to SequenceableCollection.  Some of the
subclasses (Array and String) are Updatable but not
Extensible, since they support at:put:.  Other sub-
classes (LinkedList and SortedCollection) are Ex-
tensible but not Updatable, since they support add:.
A final one (OrderedCollection) is both Extensible
and Updatable.   The abstract classes in Smalltalk
act as mixins for methods that depend upon a key
subclass responsibility method; to express this struc-

Smalltalk

C++


