OO Keywords

o Object
o Message
Lecture 21: OO Languages
o Class
CSC 131 o Instance

Spring, 2019

e Method
Kim Bruce * Subtype

* Subclass

Objects Object Types

e Internal data abstractions

. . * Allow objects to be first class
* Hide representation

e Allow use in assignment, parameters,

e Have associated state
components of structures

* Methods have access to its state Allow objects to be classified via subtyping

* Self

Classes

* Templates for creation of objects
- Initialization code

- Contain definitions for all methods
* Can modify or extend by creating subclasses.

* Can be used as types

Dynamic Method Invocation

e Each object responsible for keeping track of
implementation of its own operations

e When evaluate o.m(...) at run-time, code run
depends on operations associated with o.

* Static overloading is different

- resolved at compile time.

Multi-methods

e Code executed depends on more than one
argument.

» Example m(a,b) - choice of code to be
executed depends on run-time types of a and b.

* CLOS is example of such language

* Behavior and implementation quite different
from single-dispatch languages.

Subtyping

e Already discussed

* Relation between interfaces, independent of
implementations

Subclasses

Support incremental modification of code.

class Point
var
x = 0: Int;
methods
fun getx():int {return x}
proc move(dx: int)
{x := x + dx}
end class;

Subclasses

subclass Colorpoint of Point
modifying move
var
color = blue: ClrType

methods
fun getColor():ClrType {return color}

proc setColor(nuColor: ClrType)
{color := nuColor}
proc move(dx: int) {super.move(dx);
color := red}
end class;

Static Overloading vs
Dynamic Dispatch

* Dynamic dispatch - object receiving message
determines which code will be executed.

- Determined at run-time.

e Static overloading occurs when an object
supports two or more implementations of a
message name —- generally w/different types.

- Determined at compile-time.

- e.g, moveTo(xy) & moveTo(locn)

e Confusion when coexist in same language.

Overloading vs Dynamic
Dispatch

class C { ..
fun eq(other: Ctype):boolean {..} (1)
}
class SC of C modifying eq { ..
fun eqg(other: Ctype):boolean {..} (2) override
fun eq(other: SCtype):boolean {..} (3) overload
}

c,c’': Ctype; sc: SCtype;

c = new C; c’ = new SC; sc = new SC;
What code is executed?

c.eq(c); c.eq(c'); c.eq(sc);

c’'.eq(c); c’.eq(c’); c’.eq(sc);

sc.eq(c); sc.eq(c’); sc.eq(sc);

Type Restrictions

Type systems limit changes in method types in
subclasses.

class C
methods
clone(): CType {...};

equals(other: CType) {...};
end class

How can we change these types in subclasses?

More flexible subclasses

Why restrict changing types in
subclasses?

Methods can be mutually recursive!

class Example

methods
proc m(s:S,...) {... self.n(s) ...}
fun n(x: S): T {...}
end class;

subclass SubExample of Example modifying n

methods
fun n(x: S’): T’ {...}
proc newMethod(...){...}
end class;

What must be relationship of new type of n
to old to preserve type safety?

Changing Types in Subclasses

Subtype will always be fine!
Ie,S<:S'and T' <: T equivalently, S —T"<:S —=T
E.g., can change return type of clone in subclass to
type of objects from subclass.
Cannot specialize parameter types in equals
Binary methods
If subclass updates method types so they are
subtypes of original then type-safe.
If restricted in this way, subclasses will always
generate subtypes.

What about instance
variables?

Instance variables can be values and receivers
- No subtypes!

If Circle has instance variable center: Point,
ColorCircle's center must have same type.

Hard to redefine getCenter in ColorCircle, even if legal!

Important problem in OO language design and
type theory

OO Languages

e Simula 67

e Smalltalk-72, -74, ... -80

* C++, Object Pascal, Object Cobol, ...
e Eiffel, Sather

* Java

e Scala

® Dart, Grace?

Simula 67

Simula 67

* First OO language
e You read in text
® Also added coroutines

¢ Use of “inner” rather than “super” in
constructors

Inner

Class A; Begin startA; Inner; endA End;
A Class B; Begin startB Inner; endB End;
B Class C; Begin startC Inner; endC End;
Ref(C) X;

X :-= New C;

e Results in execution of:

startA startB startC endC endB endA

* Beta supports similar in all methods & classes

Smalltalk

Smalltalk

* New features:
- Everything is an object, including classes
- No operations —- only message-sending
- Used to build customizable environment
- Abstraction -- private instance variables, public

methods

* Dynamically typed

Dynabook

* Laptop computer - Alan Kay 1970’s

- Turing award 2003

* Proposed in 1970’s - aimed at children & adults

- Neal Stephenson’s “The Diamond Age or, a young
lady’s illustrated primer” is the next step

¢ Programmable environment

* Smalltalk as OS and programming language

Syntax

e n <- 3+4

“ o »

- send “+” message to 3 w/param 4 and insert in n

en between: 10 and: 100

- send “between: and:” message to n w/params 10, 100
e[:params | <message-expressions>]

- lexical closure - equiv to lambda expression

- positiveAmounts :=
allAmounts select: [:amt | amt isPositive]

Smalltalk class

class name Point

super class Object
class var

instance var X y

class messages and methods
!...names and code for methods..."
instance messages and methods
moveDx: dx Dy: dy ||
X <- dx+x
y <-dy +vy
X

S

X

Commands

* Loops example:

1 to:10 do:[:1i]
Transcript show: (i asString).
B
¢ Conditional
- (x>0) ifTrue:[x:=x+1.] ifFalse:[x:=0].
— true and false are special values like
lambda calculus encodings

class

Run-time representations

Point class X
Point object ~ superclass / v
te te —
methods
Method dictionary
2 newX:Y: ——— code
———+—— code
3 move — > code

Dynamic Method Invocation

* Start with object’s class and search up
superclasses.

e When call method inside, start search from self
again.

* Most other OO languages do not implement dmi in
this way - too inefficient!

Key ideas of Smalltalk

e Everything is an object

* Information hiding - instance variables

protected.

e Dynamic typing, so subtyping determined by
whether can masquerade -- “message not

understood”

¢ Inheritance distinct from subtyping

Smalltalk

Collection

Indexebl
Collection

Updatal;/e
Collection

Mapped

Dictv‘i nary Seduenceame Extensible
Collection

Collection Collection

Poppable
Collection
Array ..
: Interval Internally
Removable
Collection

ONered __—Sorted
Collection Collection

&
LinkedList

Figure 5: Interfaces versus Inheritance

C++

