
Lecture 2: Haskell
CSC 131

Spring, 2019

Kim Bruce

Read Haskell Tutorials

• All on links page from course web page

• I like “Learn you a Haskell for greater good”

• O’Reilly text: “Real World Haskell” free on-line

- Just get overview in class!

• Print Haskell cheat sheet

• Use “The Haskell platform”, available at
- http://www.haskell.org/

Office Hours Today

• Because of visitor and TA organizing, no office
hours today.

• E-mail if want to meet tomorrow (usually don’t
have office hours on Friday)

Using GHC

• to enter interactive mode type: ghci
- :load myfile.hs -- :l also works

- after changes type :reload or :r

- Control-d to exit

- :set +t -- prints more type info when interactive

- “it” is result of expression

- Evaluate “it + 1” gives one more than previous
answer.

Built-in data types
• Unit has only ()

• Bool: True, False with not, &&, ||

• Int: 5, -5, with +, -, *, ^, =, /=, <, >, >=, ...
- div, mod defined as prefix operators (`div` infix)

- Int fixed size (usually 64 bits)

- Integer gives unbounded size

• Float, Double: 3.17, 2.4e17 w/ +, -, *, /, =, <, >, >=,
<=, sin, cos, log, exp, sqrt, sin, atan.

More Basic Types

• Char: ‘n’

• String = [Char], not really primitive
- "hello"++" there", length

- No substring, but `isInfixOf` for all lists

- Also ‘isPrefixOf`, `isSuffixOf ’

• Type classes (later) provide relations between
classes.

Prefix op w/out ``!

import Data.List

list of Char

Interactive Programming
with ghci

• Type expressions and run-time will evaluate

• Define abbreviations with “let”
- let double n = n + n

- let seven = 7

• “let” not necessary at top level in programs
loaded from files

Lists

• Lists
- [2,3,4,9,12]: [Integer]

- [] -- empty list

- Must be homogenous

- Functions: length, ++, :, map, rev
• also head, tail, but normally don’t use!

Polymorphic Types

• [1,2,3]:: [Integer]

• [“abc”, “def”]:: [[Char]], ...

• []:: [a]

• map:: (a → b) → ([a] → [b])

• Use :t exp to get type of exp

Pattern Matching

• Decompose lists:
- [1,2,3] = 1:(2:(3:[]))

• Define functions by cases using pattern
matching:

prod [] = 1  
prod (fst:rest) = fst * (prod rest)

Pattern Matching

• Desugared through case expressions:
- head' :: [a] -> a  

head' [] = error "No head for empty lists!"  
head' (x:_) = x

• equivalent to
- head' xs = case xs of  

 [] -> error "No head for empty lists!"  
 (x:_) -> x  

Type constructors

• Tuples
- (17,”abc”, True) : (Integer , [Char] , Bool)

- fst, snd defined only on pairs

• Records exist as well

More Pattern Matching

• (x,y) = (5 `div` 2, 5 `mod` 2)

• hd:tl = [1,2,3]

• hd:_ = [4,5,6]
- “_” is wildcard.

Static Typing

• Strongly typed via type inference
- head:: [a] → a 

 tail:: [a] → [a]

- last [x] = x 
last (hd:tail) = last tail

• System deduces most general type, [a] -> a
- Look at algorithm later 

Static Scoping

• What is the answer?
- let x = 3- let g y = x + y- g 2- let x = 6
- g 2

• What is the answer in original LISP?
- (define x 3)- (define (g y) (+ x y))- (g 2)- (define x 6)
- (g 2)

Static Scoping

• What is the answer?
- let x = 3- let g y = x + y- g 2- let x = 6
- g 2

{
 const x = 3
 {
 g(y) = x + y
 {
 print (g 2)
 const x = 6

 {
 print (g 2)
 }
 }
 }
}

• What is the answer in original LISP?
- (define x 3)
- (define (g y) (+ x y))
- (g 2)
- (define x 6)
- (g 2)

Local Declarations
roots (a,b,c) =
 let -- indenting is significant
 disc = sqrt(b*b-4.0*a*c)
 in
 ((-b + disc)/(2.0*a),(-b - disc)/(2.0*a))

*Main> roots(1,5,6)
(-2.0,-3.0)
or
roots' (a,b,c) = ((-b + disc)/(2.0*a),  
 (-b - disc)/(2.0*a))
 where disc = sqrt(b*b-4.0*a*c)

Anonymous functions

• dble x = x + x

• abbreviates

• dble = \x -> x + x

Defining New Types

• Type abbreviations
- type Point = (Integer, Integer)

- type Pair a = (a,a)

• data definitions
- create new type with constructors as tags.

- generative

• data Color = Red | Green | Blue
See more complex examples later

Type Classes Intro

• Specify an interface:
- class Eq a where  

 (==) :: a -> a -> Bool -- specify ops 
 (/=) :: a -> a -> Bool  
 x == y = not (x /= y) -- optional implementations 
 x /= y = not (x == y)

- data TrafficLight = Red | Yellow | Green  
instance Eq TrafficLight where  
 Red == Red = True  
 Green == Green = True  
 Yellow == Yellow = True  
 _ == _ = False

Common Type Classes

• Eq, Ord, Enum, Bounded, Show, Read
- See http://www.haskell.org/tutorial/stdclasses.html

• data defs pick up default if add to class:
- data ... deriving (Show, Eq)

• Can redefine:
- instance Show TrafficLight where  

 show Red = "Red light"  
 show Yellow = "Yellow light"  
 show Green = "Green light"

More Type Classes
• class (Eq a) => Num a where ...
- instance of Num a must be Eq a

• Polymorphic function types can be prefixed w/
type classes
- test x y = x < y has type (Ord a) => a -> a -> Bool

- Can be used w/ x, y of any Ord type.

• More later ...
- Error messages often refer to actual parameter needing to be

instance of a class -- to have an operation.

Higher-Order Functions
• Functions that take function as parameter
- Ex: map:: (a → b) → ([a] → [b])

• Build new control structures
- listify oper identity [] = identity  

listify oper identity (fst:rest) =  
 oper fst (listify oper identity rest) 

- sum' = listify (+) 0 
mult' = listify (*) 1 
and' = listify (&&) True 
or' = listify (||) False

Exercise

• Is listify left or right associative?

- What is listify (-) 0 [3,2,1]? 2 or -6 or 0 or ???

• How can we change definition to associate the
other way?

See built-in foldl and foldr

