
Lecture 18: Control Structures
CSC 131

Spring, 2019

Kim Bruce

Continuations
• Continuation of expression is remaining work to

be done after evaluating expression
- the future

- Represented as a function, applied to value of exp,
which is value computed so far.

• Capture continuation
- use it later to return to execution.

• Explicitly represented in Scheme, ML

• Have been important in compilers for functional
languages, concurrency, web programming

Example 0: Roots of Quadratic
exception notQuadratic;
exception imaginaryRoots;

fun roots(a, b, c) = let
 val discBase = (b*b) - (4.0*a*c)
 val denom = 2.0*a
 in
 if (denom == 0.0) then raise notQuadratic
 else if discBase < 0.0 then raise imaginaryRoots
 else let
 val disc = Math.sqrt(discBase)
 in
 if disc > 0.0 then [(~b + disc)/denom, (~b - disc)/denom]
 else [~b/denom]
 end
 end;

Example 1: Roots of Quadratic
fun checkQuad (x, n_continuation, e_continuation) =
 if (x == 0.0) then e_continuation() else n_continuation(x);

fun roots1(a, b, c) =
 let fun econt () = raise notQuadratic
 fun ncont (x) =
 let val discBase = (b*b) - (4.0*a*c)
 in
 if discBase < 0.0 then raise imaginaryRoots
 else let val disc = Math.sqrt(discBase)
 in
 if disc>0.0 then [(~b + disc)/x, (~b - disc)/x]
 else [~b/x]
 end
 end
 in
 checkQuad(2.0*a, ncont, econt)
 end;

Example 2: Roots of Quadratic
fun checkImaginary (x, n_continuation, e_continuation) =
 if x < 0.0 then e_continuation() else n_continuation(Math.sqrt(x));

fun roots2(a, b, c) =
 let
 fun econt () = raise notQuadratic
 fun ncont (x) =
 let
 fun econt’ () = raise imaginaryRoots
 fun ncont’ (disc) =
 if disc > 0.0 then [(~b + disc)/x, (~b - disc)/x]
 else [~b/x]
 in
 checkImaginary(b*b - 4.0*a*c, ncont’, econt’)
 end
 in
 checkQuad(2.0*a, ncont, econt)
 end;

Example 3: Roots of Quadratic
fun checkNumRoots(disc, continuation1, continuation2) =
 if disc > 0.0 then continuation1(disc) else continuation2();
fun roots3(a, b, c) =
 let fun econt () = raise notQuadratic
 fun ncont (x) =
 let fun econt’ () = raise imaginaryRoots
 fun ncont’ (disc) =
 let fun con1 (disc) = [(~b + disc)/x, (~b - disc)/x]
 fun con2 () = [~b/x]
 in
 checkNumRoots(disc, con1, con2)
 end
 in
 checkImaginary(b*b - 4.0*a*c, ncont’, econt’)
 end
 in
 checkQuad(2.0*a, ncont, econt)
 end;

Final version is
tail call!!

Using Continuations

• Used w/multiple threads w/separate stack
- Blocked thread is represented as ptr to continuation

• CPS transform allows to rewrite programs so
no need to ever return!

• Useful in web programming where no state.

Changing Execution Order

Manipulating Evaluation
Order

• What if actual params are expensive to
evaluate, but aren’t always used (and you are in
an eager language)?

• Can suspend evaluation of e by replacing it by
Delay(e) = fn () => e.

• Evaluate by Force(d) = d()

• Important to have as macros, not functions!

Summary of Statements

• Progression from goto to higher-level
abstractions:
- Expression ⇒ function

- Statement ⇒ procedure

- control structure ⇒ iterator

• Modern control: iterators, exceptions,
continuations, delay-force

Programming in the Large
How can we understand large programs
we write so that we can get them right
and then make modifications to them?

Problems w/Large Programs

• Wulf & Shaw: Global variables considered harmful

• Problems:
- Side effects: executing procedure can change global

- Indiscriminate access - can't prevent access - may be
difficult to make changes later if others use details

- Screening - may lose access via new declaration of
vble (hole in scope!)

- Aliasing - control shared access to prevent more than
one name for reference variables.

Characteristics of Solution

- No implicit access to outer variables

- Right to access by mutual consent

- Access to structure not imply access to substructure

- Provide different types of access (e.g. read-only)

- Decouple declaration, name access, and allocation of
space.

• Scope independent of where declared,

• similarly w/allocation of space - like “new”

Abstract Data Types (1970’s)
• Already did procedural -- now data!

• Encapsulation:
- Package data structure and its operations in same

unit

- Data type consists of set of elements + operations
• constructors, observers, operators.

• Representation hidden
- representation independence

• Look like built-in types.

Specification

• Definitions should not depend on
implementation details.

• Constants, types, variables, and operations
- Behavior must be specified abstractly

• pre- and postconditions

• Axioms and rules: pop(push(S,x)) = S, 
 if not empty(S) then push(pop(S), top(S)) = S

- Details of implementation provided elsewhere

- Data + Operations (+ equations) = Algebra

Implementation

• Details of representation and implementation
of operations.

• Details not accessible outside unit.

Design Methodologies

• Top-down design
- Start w/ high-level procedural specification and

successively refine.

• Abstract data types (more bottom-up):
- Identify abstract types and specify operations.

- Use high-level types and ops to solve problem.

- Implement ADT with concrete data type.

Design Methodologies

• Combine:
- Partition first into modules via ADT’s

- Use top-down w/in ADT’s to refine

Language Design Concerns

• Simplicity

• Application of formal techniques to
specification and verification

• Minimize lifetime costs

Modules

• Reusable modules:
- Separate, but not independent compilation

- Maintain type checking

- Control over export and import of names

Simula 67
 class vehicle(weight,maxload);
 real weight, maxload;
 begin
 integer licenseno;
 real load;
 Boolean procedure tooheavy;
 tooheavy := weight + load > maxload;

 load := 0; (* initialization code *)
 end

 ref(vehicle) rv, pickup;
 rv:- new vehicle(2000,2500);
 pickup:- rv; (* assignment via sharing *)
 pickup.licenseno := 3747;
 pickup.load := pickup.load +150;
 if pickup.tooheavy then ...

Simula 67

• Derived from Algol 60 for discrete simulations.

• Nygaard and Dahl: Turing award 2001

• Introduced classes and objects
- No information hiding

Representation Independence
& Information Hiding

• Choice of representation doesn’t affect
computation. E.g., rationals.

• If represent new type in terms of old:
- Rep may have values not corresponding to new type.

E.g., (3,0)

- Rep may have several values corresponding to same
abstract value. E.g., (1,2) and (2,4).

- Values of new type can be confused w/values of rep
type.

ADT values

• Only constructible values count.

• Specified abstractly
- pop(push(fst,rest)) = rest,

- top(push(fst,rest)) = fst,

- empty(EmptyStack) = true,

- empty(push(fst,rest)) = false

• Avoid previous problems because rep hidden

Clu (1974)
• Cluster is used for ADT’s

• Cluster is a type -- not hold one.

• Can create numerous objects from one cluster

• Held as implicit references (like Java)

• cvt used to go back and forth to representation
sorted_bag = cluster [t : type] is create, insert, ...
 where t has
 lt, equal : proctype (t,t) returns (bool);

Ada (1980)
generic
 length : Natural := 100; -- generic parameters
 type element is private;
package stack is
 type stack is private;
 procedure make_empty (S : out stack);
 procedure push (S : in out stack; X : in element);
 procedure pop (S : in out stack; X: out element);
 function empty (S : stack) return boolean;
 stack_error : exception;

private
 type stack is record
 space : array(1..length) of element;
 top : integer range 0..length := 0;
 end record;
end stack;

Why does specification have “private” part?

Ada (1980)

package body stack is
 procedure make_empty (S : out stack);
 begin
 S.top := 0;
 end make_empty ;

 procedure push (S : in out stack; X : element) is
 begin
 if full(S) then
 raise stack_error;
 else
 S.top := S.top + 1;
 S.space(S.top) := X;
 end if;
 end push;

 ...
end stack;

Ada (1980)

s: stack(100,int);

begin
make_empty(s);
push(s, 47);
if (empty(s)) then ...

end;

Internal representation (object)
generic
 length : Natural := 100; -- generic parameters
 type element is private; -- only assignment and tests for =
package stack is -- specification only
 procedure push (X : in element);
 procedure pop (X: out element);
 function empty return boolean;
 function full return boolean;
 stack_error : exception;
end stack;

package body stack is -- implementation
 space : array (1..length) of element;
 top : integer range 0..length := 0;

 procedure push (X : in element) is
 begin
 if full() then
 raise stack_error;
 else
 top := top + 1;
 space(top) := X;
 end if;
 end push;
 ...

No stack parameter!!

Using internal representation
 package stack1 is new stack(20,integer);
 package stack2 is new stack(100, character);
 -- Note that this initializes length in both cases to 0
 use stack2;
 stack1.push(5)
 if not stack1.empty() then
 stack1.pop(Z);
 endif;
 push('z');

• Internal rep like an object

• Changing rep requires recompilation but not
changing source code of users.

Modula 2

• Similar to Ada except
- no generics

- no “private” section

• Require all private types to take same amount
of space -- a pointer

 DEFINITION MODULE stackMod;
 IMPORT element FROM elementMod;
 TYPE stack;
 PROCEDURE make_empty (VAR S : stack);
 PROCEDURE push (VAR S : stack; X : element);
 PROCEDURE pop (VAR S : stack; X: element);
 PROCEDURE empty (S : stack): BOOLEAN;

 END stackMod.

 IMPLEMENTATION MODULE stackMod;
 TYPE stack = POINTER TO RECORD
 space : array[1..length] of element;
 top : INTEGER;
 END;

 PROCEDURE make_empty (VAR S : stack);
 BEGIN
 S^.top := 0;
 END make_empty ;

 ... (* can be start-up code too to initialize *)
 END stackMod;

