
Lecture 17: Control Structures
CSC 131

Fall, 2014

Kim Bruce

Control Structures

• FORTRAN 1
- GO TO n

- GO TO (17, 43, 12, 99), I (also other variants)

- IF(arith exp) 17, 43, 12  
means go to statement number 17 if arith exp is
negative, 43 if zero, and 12 if positive

- DO label ivble = 1, 20, 2

• Close to machine code

ALGOL 60

• GO TO 99

• IF ... THEN ... ELSE (hierarchical)

• for i := 3, 7, 11 step 1 until 16, i/2 while i >= 1, 2
step i until 32 do ..
- BAROQUE, all expressions re-eval each time

through loop:

- 3, 7, 11, 12, 13, 14, 15, 16, 8, 4, 2, 1, 2, 4, 8, 16, 32.

• switch - like in C/C++/Java.

Goto Statements

• Why need repetition - can do it all with goto's?

• "The static structure of a program should
correspond in a simple way with the dynamic
structure of the corresponding computation."  
Dijkstra 1968 letter to CACM.

Pascal
• go to

• if .. then .. else

• for, while, repeat (confusion w/positive vs.
negative exit)

• labeled case - Tony Hoare
- clear & efficient

- construct jump table,

- optimize depending on size,

- self-documenting.

More on Case

• Modula 2 improved by adding otherwise clause

• Haskell & ML's pattern matching is compiled
into a case statement:

fun reverse l = case l of
 nil => nil |
 (h::rest) => (reverse rest)@[h];

• if-then-else as well

Grace’s Match – Case
match (x) // x : 0 | String | Student

 
 // match against a constant

 case { 0 -> print("Zero") }

 // typematch, binding a variable

 case { s : String -> print(s) }

 // destructuring match, binding variables ...

 case { Student(name, id) -> print (name) }

Scala has similar destructuring match

No longer supported!

Refresher: Natural Semantics
of Commands

 (e, ev, s) => (v, s')
 ------------------------------ where ev(x) = loc
 (x := e, ev, s) => s'[loc:=v]

 (C1, ev, s) => s' (C2, ev, s') => s''
 --
 (C1; C2, ev, s) => s''

 (b, ev, s) => (true, s') (C1, ev, s') => s''
 --
 (if b then C1 else C2, ev, s) => s''

If every statement returns a value then also return v from semantics

Semantics of While

 (b, ev, s) => (false, s')

 (while b do C, ev, s) => s'

 (b, ev, s) => (true, s') (C, ev, s') => s''
 (while b do C, ev, s'') => s'''
 --
 (while b do C, ev, s) => s'''

Notice similarity between
 while E do C
and
 if E then begin
 C;
 while E do C
 end

Iterators

• Abstract over control structures (in Clu)
 for c : char in string_chars(s) do ...

- where

 string_chars = iter (s : string) yields (char);
 index : Int := 1;
 limit : Int := string$size (s);
 while index <= limit do
 yield (string$fetch(s, index));
 index := index + 1;
 end;
 end string_chars;

Implementing Iterators

• Just another object w/state in o-o language

• What about procedural?

• How can we retain state?

• Specific kind of coroutine.

When Good Programs
Go Bad!

Handling Errors

• What happens when something goes wrong,
e.g., with read from file.

• In C returns error condition, which is generally
ignored.

• In more modern languages, throw exception,
which must be handled or crash.

Exceptions

• Designed to handle unexpected errors.

• Exception handlers based on dynamic calls, not
static scope.

• Allows program to recover from exceptional
conditions, esp. beyond programmers control

• Can be abused!

Example Exceptions

• Arithmetic, array bounds, or I/O faults,

• Failure of preconditions

• Unpredictable conditions

• Tracing program flow in debugger

Exception Handling

• Ada:
- raise exception_name;

- handling:

 begin
 C
 exception
 when excp_name1 => C'
 when excp_name2 => C''
 when others => C'

• Java, C++ similar w/ “throw” & “try-catch”

Handling Exceptions

• When throw exception -- where look for
handler?
- Same unit? (Ada/C++/Java)

- Calling unit? (Clu)

- If not find, continue up call chain

After Handling ...

• (Ada/Java/ML/Haskell): Return from block

• PL/I: Resumption model: re-execute failed
statement.

• Eiffel: Re-execute block where failure occurred

• ML & Java -- exceptions can take parameters

Haskell uses Monads
data Exn a = Oops String
 | Answer a deriving (Show)

instance Monad Exn where
 return a = Answer a -- return :: a -> Exn a

 -- (>>=) :: M a -> (a -> M b) -> M b
 (Oops s) >>= f = Oops s
 (Answer a) >>= f = f a

throw :: String -> Exn a
throw = Oops

catch :: Exn a -> (String -> Exn a) -> Exn a
catch (Oops l) h = h l
catch (Answer r) _ = Answer r

See Stone’s ExcInterp.hs for interpreter handling exceptions

Exceptions in Java

• Objects from subclass of Exception class
 try {
 ...
 } catch (ExcType ex) {
 ...
 } catch (ExcType’ ex) {...} ...

• If not caught, must declare. E.g.
public E pop() throws EmptyStackException {
 ... throw new EmptyStackException(); ...
}

Pattern matching!!

RuntimeException

• If exceptions subclasses of RuntimeException
then need not be declared in method headers

• Ex.:
- NullPointerException,

ArrayIndexOutOfBoundsException,
IllegalArgumentException,
NumberFormatException, and ArithmeticException

• Unfortunately, also includes
EmptyStackException

Talk later about problems!

If Exception Not Handled

• Pop off activation records while searching for
handler.

• What if allocated memory in unit being
popped?

• OK if garbage collection, but ...

• Closing files also problems

Java try-catch-finally

 try {
 ...
 } catch (ExcType ex) {
 ...
 } catch (Exc'Type ex) {
 ...
 } finally {... }

No matter how you complete block,
will execute finally clause

So far ...

• Structured Programming
- Goto considered harmful

• Exceptions
- Structured jumps -- can carry a value

- dynamic scoping of exception handler

• Continuations ...

Continuations
• Continuation of expression is remaining work to

be done after evaluating expression
- the future

- Represented as a function, applied to value of exp,
which is value computed so far.

• Capture continuation
- use it later to return to execution.

• Explicitly represented in Scheme, ML

• Have been important in compilers for functional
languages, concurrency, web programming

