
Lecture 15: Run-Time Stack
CSC 131

Kim Bruce

Midterm

• Open book, notes, course web pages

• The exam will be available by 9 a.m. Monday
and must be turned in electronically by
midnight Thursday.

Midterm Topics

• Haskell (including monads/type-classes)

• Language implementation
- lexing/parsing/type-checking & inference/interpreters

• Lambda calculus

• Run-time memory management
- Run-time stack (no function arguments/results)

- heap on final

Function Parameters

• Harder to cope with because need environment
defined in. Two problems:
- Downward funarg:

- When evaluate f(1), is in environment where x = 17!

• Return function value -- loses env of definition

x = 47
f y = x + y;
g(h) = let val x = 17
 in h(1)
> g(f)

Represent function values as
closures

• Function value represented as a pair of
- Environment (pointer to run-time stack where

defined)

- Code for function

• When call a function (passed as closure)
- Allocated activation record for function

- Set access link in activation record using value in
closure.

x 47

access
f code for f

access
g code for g

access
y 1

execution of h(1)

access
h
x 17

execution of g(f)

Function as Return Value
fun make_counter(init: int) =
 let
 val count = ref init
 fun counter(inc:int) =

 (count := !count + inc; !count)
 in
 counter
 end;

val c = make_counter(1);
c(2) + c(2);

c needs access to count when applied!
Stack discipline does not work.

ML program

 v |
 ---------- --|--------
 make_ctr | ----|--------- | | | --|------> code for make_ctr
 ---------- <- -----------
 |
 ---------- |
 access | ----|--|
 ----------<--| ----------
 c | ----|---|----- | | | --|------> code for counter
 ---------- | --|--------
 | | ^
 mk_ctr(1) ---------- | | |
 access | ----|---- | |
 ---------- <----------- |
 init | 1 | |
 ---------- ------- |
 count | ----|-- | 1 | |
 ---------- ------- |
 counter | ----|--------------|

While executing next to last line of program: c = mk_ctr(1)
Just before assign to c

 v |
 ---------- --|--------
 make_ctr | ----|--------- | | | --|------> code for make_ctr
 ---------- <- -----------
 |
 ---------- |
 access | ----|--|
 ----------<--| ----------
 c | ----|---|----- | | | --|------> code for counter
 ---------- | --|--------
 | | ^
 mk_ctr(1) ---------- | | |
 access | ----|---- | |
 ---------- <----------- |
 init | 1 | |
 ---------- ------- |
 count | ----|-- | 1 | |
 ---------- ------- |
 counter | ----|--------------|

When make assignment c = mk_ctr(1),
pop off activation record for mk_ctr(1) ...

 v |
 ---------- --|--------
 make_ctr | ----|--------- | | | --|------> code for make_ctr
 ---------- <- -----------
 |
 ---------- |
 access | ----|--|
 ----------<--| ----------
 c | ----|---|----- | | | --|------> code for counter
 ---------- | --|--------
 | | ^
 mk_ctr(1) ---------- | | |
 access | ----|---^ | |
 ---------- <--| ------- |
 init | 1 | | |
 ---------- | ------- |
 count | ----|-- || 1 | |
 ---------- | ------- |
 counter | ----|---|----------|
 ---------- |
 |
 c(2) ---------- |
 access | ----|---

 inc | 2 |

Still needed, but no longer there!
Must be retained even though not on
run-time stack!!!!

Problem

• When call c(2), activation record for
make_counter is gone.

• Hence no access to count

• To solve, must keep activation records around
for functions that return functions

• Garbage collect them when no longer reference
to them!

Dynamic Languages
• Dynamic scope -- no longer need static/access

link in activation record
- look for closest activation record with vble

- must be able to find names dynamically

• Dynamic types -- associate type descriptor w/
values of variables

• Late binding costs -- more space, slower access

• Benefits - more flexibility

Heap Management

• Stack doesn’t work in some circumstances
- functions returning functions

- dynamically allocated memory

• Heap allows dynamic allocation/deallocation of
memory.
- Manually

- Automatically

Managing the Heap

• Heap maintained as stack of blocks of memory

• Need strategy to handle requests and returns.
- Best fit

- First fit

• Fragmentation is serious problem when return

• Coalesce blocks on heap

• May need to compact memory occasionally

Automating Dispose
• Garbage collection (lazy)
- LISP by McCarthy

• Reference counting (eager):
- Keep track of number of refs to block of memory.

- Return it when count is 0.

- Disadvantages:
• space and time overhead of keeping count,

• circular structures.

- Weak variant used in Objective C on iphone
• Newest version automates it.

• Python uses ref counting + GC for circular

Garbage Collection

• At a given point in execution of program P,
memory location m is garbage if no continued
execution of P from this point can access m.

• Automatic garbage collectors start with root
set and search out all memory locations
accessible from root set.

• Automatic garbage collectors necessarily
conservative.

Mark and Sweep Collector

• Mark “alive” elements.

• Sweep through memory and reclaim garbage

• Problems:
- Space for marks (and stack while marking)

- Two sweeps through memory needed

- Sweeping takes time proportional memory size

• Used in Java 1.0, 1.1, but not later

Copying Collector
• Divide memory in half -- working vs. free

• When working exhausted
- Copy live nodes from working to free (use forwarding

address)

- Swap halves

• Evaluation:
- Only looks at live cells, but can be incremental

- Needs twice as much space, but respects cache

- Allocation very cheap! Always one big block free

- GC fast if most are dead

Memory as time passes ...
Diagram from Bill Venners, Inside the Java VM

Copying Collector Generational Collector

• Only try to collect recently allocated blocks
- Infant mortality - majority of blocks die young!

• Divide memory into two or more generations.

• Modern Java uses copying collector for
youngest and older uses mark-compact scheme
- youngest gets lots of garbage quickly

- mark-compact doesn’t move lots of older objects

- Can now hand-tune GC

Implementing Parametric
Polymorphism

Section 6.4.2 of text

Parametric Polymorphism
Redux

• How do we implement polymorphic classes,
functions, etc.

• Scheme, ML, Haskell, Clu (1974), Ada, C++,
Eiffel, Java

• Efficient implementation depends on shared
code.

C++ templates
template <typename T>
class Stack {
 private:
 std::vector<T> elems; // elements

 public:
 void push(T const&); // push element
 void pop(); // pop element
 T top() const; // return top element
 bool empty() const { // return if stack empty
 return elems.empty();
 }
};

Different T’s take different amounts of space,
so macro-expand at compile time

Easier if Uniform Reps

• LISP, Scheme, ML, Haskell, Clu, Eiffel, and
Java have uniform reps for values so can share
same code.

• Ada requires different implementation, but still
type-checks statically.

• Automatic boxing and unboxing helps with
primitives.

