Parameter Passing
* Call-by-reference (FORTRAN, Pascal, C++)

- pass address (I-value) of parameter

Lecture 1 5: Run-Time Stack e Call-by-copying (Algol 60, Pascal, C, C++)

- call-by-value/result/ or value-result

CSC 131

- pass (r)value of parameter
- options: in, out, in-out

Kim Bruce

* Call-by-name (Algol 60)

- pass actual expression (as “thunk”) - not macro!

- re-evaluate at each access

- lazy gives efficient implementation if no side effects

Call-by-name What about Java?
procedure swap(a, b
var temp : integer;
begin
temp := a;
a := b;
b := temp

* Conceptually call-by-sharing
end;

: integer);

Won't al k! e Implemented as call-by-value of a reference
e Won't always work!

* swap(i, z{iD) with i = 1, z{1} = 3, z[3} = 17

 Can’t write swap that always works!

Static Memory allocation Stack-based Allocation

e Pascal, C, C++, Java, ...

- Activation records on stack

* FORTRAN

- All storage known at translation time

o)) _ - Problem: static (scope) vs dynamic (return address)
- Activation records directly associated with code

segments - Activation records pushed on call and popped on return
- At compile time, instructions and vbles accessed by - Activation record contains:

(unit name, offset) o return address
- At link time, resolve to absolute addresses. e return-result address - if necessary - where to find result

- Procedure call and return straightforward * control or dynamic link — o next stack frame

e access or static link - to nearest stack frame of enclosing scope

e parameters, local vbles, & intermediate results.

Accessing non-local vbles Assign Variables Offsets
rogram main;
p t}%pe array_type - array [1..10] of reals procedure z (h : integer); Name Level Name Level
var a : integer; var a : array_type;
b : array_type; begin main 0 y 2
procedure x (var ¢ : integer; d : array_type); : a 1 £ 3
var e : array_type; x (h,2); b 1 3
procedure y (f: array_type); : g
var g : integer; end; X 1 z 1
begin begin {main} c 2 h 2
z(a+c); : d 2 a 2
end; {y} x (a,b); e 2
begin {x} ; { o)
= end. {main .) . .
y(e):' = bI6}-.... Look at run time stack when: main calls x, which calls y, which
end; {,;} calls z, which calls x, which callsy, ...

execution of main E
1T code for x
[T code for z

access =

e {

execution of x d |

g {
y 1 code for'y

access
execution of y 77

execution of z

i

Accessing non-local Variables

e Length of access chain from any fixed procedure
to main is always same length

* Any non-local variable found after some fixed
number of access links (independent of activation
record)

* # of links = constant determinable at compile time

* Access via <chain position, offset> where 1st is #
of access links to traverse, 2nd is offset in
activation record.

Allocating Activation Record

o Static - sizes of all local variables and parameters
known at compile time

- Fixed size activation records

¢ Size known at unit activation
- Array bounds depend on parameters

- Space for parameter descriptors at fixed offset

* Dynamic
- Flexible arrays and pointers

- Allocate on heap w/reference on stack

Tail-Recursive Functions

* Recursion less efficient (space & time) than
iteration because of activation records.

* A call to function f in body of g is tail if g
returns immediately after call of f terminates.

- Ex: fungx=ifx> o then fxelse f (-x)
* Tail calls use stack space more efficiently

e Tail recursive functions even better!

Tail-recursive Functions

o Compare:

rev [] =[]

rev (fst:rest) = (rev rest)++[fst]
e and

reverse 1 = tlrev 1 [] where

tlrev [] ¥ =1
tlrev (fst:rest) r =

tlrev rest (fst:r)
® Can accumulate answer ...

fact n = tlfact(n,1)
tlfact (n,ans) = if n <= 1 then ans
else tlfact(n-1,n*ans);

Fibonacci

int fib(int n) {
int current = 1;
int next = 1;
while (n > 0) {
int temp = current;
current = next;
next = next + temp;

n=n-1;

}

return current;
}
or recursively:
fib 0 = 1
fib 1 =1
fib n = fib (n-1) + fib(n-2);

Replace while loops

Can replace while by tail recursive function where all variables used become
parameters:

fastfib n = fibloop n 1 1
where

fibloop 0 current next = current
fibloop n current next =
fibloop (n-1) next (current + next);

Correctness

* Let ao, aj, ... be list of Fibonacci numbers

e Lemma: Foralln, k > o,
fibloop n ax ak. = akm

* fastfib n = fibloopn 11
= fibloop n a, a;

:an

Function Parameters

e Harder to cope with because need environment
defined in. Two problems:

- Downward funarg:
X =
fy
g(h let val x = 17
in h(1l)

(

-
Il

> g(f)

- When evaluate f(1), is in environment where x = 17!

e Return function value -- loses env of definition

Represent function values as
closures

* Function value represented as a pair of

- Environment (pointer to run-time stack where

defined)

- Code for function

* When call a function (passed as closure)
- Allocated activation record for function

- Set access link in activation record using value in
closure.

4

=

. | I code for f
L] i ! code for g

daccess

execution of g(f)

execution of b(1)

IR

Function as Return Value

fun make counter(init: int) =

let

val count = ref init

fun counter(inc:int) =

(count := !count + inc; !count)

in

counter
end;

ML program

val ¢ = make counter(1l);
c(2) + c(2);

¢ needs access to count when applied!
Stack discipline does not work.

mk_ctr(l) ------——-- |
access | U [—

1
1
1
1
1
1
[

|

|

|

init | 1 | |
|

count |
|

counter | B P — |

While executing next to last line of program: ¢ = mk_ctr(1)
Just before assign to ¢

mk_ctr(l) ------——-- |
access | m———]m——

|

|

|
init | 1 | |
|
count | _——-] 1 |
|

counter | e |

When make assignment ¢ = mk_ctr(1),
pop off activation record for mk_ctr(1) ...

mk_ctr(1)
access |

init |

count |

counter | | B |=mmmmmmmem |

€@) mmmmmmmm Still needed, but no longer there!
access |

__________ Must be retained even though not on
inc | 2 | run-time stack!!l!

Problem

e When call c(2), activation record for
make_counter is gone.

e Hence no access to count

* To solve, must keep activation records around
for functions that return functions

e Garbage collect them when no longer reference
to them!

