Lecture 14: Type Safety &
Run-Time Stack

CSC 131

Kim Bruce

Type Safety

e Is there any connection between type checking
rules and semantics?

* If E |- e: T, what does that say about
computation (e, env) = v?

e If E and env “correspond”, then expect v: T

Typed PCF

eT:=Int|lBool|l T->T

* Provide identifiers w/type when introduced.

e ¢ z=x|n|truel false | succ | pred | iszero |
ife theneelse el (fn xT)=>¢€)l(ee) |
rec xT) =>e Ignore recursion for now!

Type-checking Rules

E is type environment: identifiers — types

E |- n: Ing, if n is an integer

E I~ true: Bool, E I~ false: Bool

E |- succ: Int — Int, E |- pred: Int — Int
E |- iszero: Int — Bool

El-x: E®

More Type-Checking Rules

El-e:Bool, El-ei: T, El-e2: T
El-ifethenerelseez: T
EF£T—U EFxT
E-(x:U
Efx: Tl body: U
E - (fn &T) => body): T — U

Computation Rules

(id, env) = env(id) (n, env) = n, for n an int
(true, env) = true (false, env) = false
(succ, env) = succ (pred, env) = pred

(iszero, env) => iszero

(b, env) => true, (e1, env) = v

Gf b then e1 else e2, env) = v

Computation Rules

((fn &:T) => e), env) =< fn &T) => e, env >

(e1, env) = < fn (x:T) => €3, env' >
(€2, env) = v2, (3, env' [v2/x]) = v

((e1 e2), env) = v

Typing Values

|-z : Int, for n an integer
I true : Bool

I~ false : Bool

I succ : Int — Int

= pred : Int — Int

|-y zszero : Int — Bool

Environment Compatibility

FFinkD=>e:T—-U

H<f&T)=>e,env>T—U

for E’ s.t E’ and env are compatible

E and env are compatible ift
domain(E) = domain(env), and

for all x in domain(env), - env(x): Ex)

Safety

Theorem: (Subject Reduction) Let E and env be
compatible environments.

Let e be a term of typed PCF. If E |- e: T and
(e,env) = v, then |- v: T.

Proof: By induction on proof of E |-e: T

Proof

Conditional: S’pose E |- if b then e1 else e2: T because

E I- b: boolean, Eler: T, and El-e2:T.
Two cases depending on the evaluation of b.

Case 1: (b, env) = true.

Then if (e1,env) = v, it follows that
Gf b then er else e2, env) = v.

By induction and El-e1: T it follows that |-, v: T,
which is all we need.

Case 2: (b, env) = false is similar. Skip rest

Type Safety

* Errors have been made in type systems.

- See examples in OO languages

* Need to verify that type system is consistent
with semantics.

e Progress Lemma (computations don’t get stuck) not
shown here, but also important

Attributes of Variable

° Scope Done!
e Lifetime

¢ Location

e Value

Lifetime

* FORTRAN - all allocated statically - o
e Stack-based (C/C++/Java/Pascal/...)

- local vbles/ parameters: method/procedure/block
entry to exit

- allocate space in activation record on run-time stack

* Heap allocated variable

- lifetime independent of scope

* Static - global vbles or static vbles

Value & Location

* Sometimes referred to as l-value & r-value
- x=x+1 What does each occurrence of x stand for?

- location normally bound when declaration processed

* Normally values change dynamically
- if frozen at compilation then called constants

- Java final variables frozen when declaration
processed.

- Java static final bound at compile time.

Aliases

e x and y are aliases if both refer to same
location.

e If %, y are aliases then changes to x affect value

ofy.

¢ Java has uniform model where assignment is by
“sharing”, so create aliases.
e Languages that mix are more confusing.

- Common mistakes occur when not realize aliases.
E.g, add elt to priority queue and then change it ...

Pointers Program Units

* “Pointers have been lumped with the goto
statement as a marvelous way to create

impossible to understand programs”)
P Prog * Separate segments of code allowing separate

- K &R, C Programming Language declarations of variables
¢ Problems - Ex.: procedures, functions, methods, blocks
- Dangling pointers - leave pointer to recycled space - During execution represented by unit instance

o stack frame popped or recycled heap item e fixed code segment

. . . e activation record with “fixed” ways of accessing items
- Dereference nil pointers or other illegal address Y 8

Unreachable garbage

in C: p+1 different from (int)p + 1

Activation Record Structure Invoking Function

R dd * Make parameters available to callee
e Return address
- E.g., put on stack or in registers

* Access info on parameters (how?)
P « Save state of caller (registers, prog. counter)

* Space for local vbles
e Ensure callee knows where to return

* How get access to non-local variables?))
¢ Enter callee at first instruction

Returning from Function Parameter Passing

* Call-by-reference (FORTRAN, Pascal, C++)

- pass address (I-value) of parameter
e If function, leave result in accessible location

e Call-by-copying (Algol 60, Pascal, C, C++)
- e.g., register or top of stack

- pass (r)value of parameter
e Get return address and transfer execution back - options: in, out, in-out

e Caller restores state o Call-by-name (Algol 60)

- pass actual expression (as “thunk”) - not macro!

- re-evaluate at each access

- lazy gives efficient implementation if no side effects

Call-by-name What about Java?
procedure swap(a, b
var temp : integer;
begin
temp := a;
a := b;
b := temp

* Conceptually call-by-sharing
end;

: integer);

Won't al k! e Implemented as call-by-value of a reference
e Won't always work!

* swap(i, z{iD) with i = 1, z{1} = 3, z[3} = 17

 Can’t write swap that always works!

