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Restrictions on ML/Haskell 
Polymorphism

• Type (a → b) →([a] → [b]) stands for:

- ∀a. ∀b. (a → b) →([a] → [b])

• Haskell functions may not take polymorphic 
arguments.  E.g., no type:
- ∀b. ((∀a.(a → a)) →(b → b))

- define:  foo f  (x,y) = (f x, f y) 

- id z = z

- foo id (7, True)  -- gives type error!

- Type of foo is only (t -> s) -> (t, t) -> (s, s)

Restrictions on Implicit 
Polymorphism

Polymorphic types can be defined at top level or in let clauses, 
but can’t be used as arguments of functions

   id x = x 
      in (id "ab", id 17)

OK, but can't write

   test g = (g “ab”, g 17)

Can’t find type of test w/unification.
More general type inference is undecidable.

Explicit Polymorphism

Easy to type w/ explicit polymorphism:
    
  test (g: forall t.t -> t) = (g “ab”, g 17) 
     in test (\t => \(x:t) -> x)

Languages w/explicit polymorphism:
Clu, Ada, C++, Eiffel, Java 5, C#, Scala, Grace



Explicit Polymorphism

• Clu, Ada, C++, Java

• C++ macro expanded at link time rather than 
compile time.

• Java compiles away polymorphism, but checks 
it statically.

• Better implementations keep track of type 
parameters.

Summary

• Modern tendency: strengthen typing & avoid 
implicit holes, but leave explicit escapes

• Push errors closer to compile time by:
- Require over-specification of types

- Distinguishing between different uses of same type

- Mandate constructs that eliminate type holes

- Minimizing or eliminating explicit pointers

• Holy grail: Provide type safety, increase flexibility

Polymorphism vs Overloading
• Parametric polymorphism
- Single algorithm may be given many types

- Type variable may be replaced by any  type
• Examples: hd, tail ::[t]->t ,  map::(a->b)->[a]->[b]

• Overloading
- A single symbol may refer to more than one algorithm.

- Each algorithm may have different type.

- Choice of algorithm determined by type context.
• (+) has types Int → Int → Int and Float → Float → Float, but not 

t→t→t for arbitrary t.

Why Overloading?

• Many useful functions not parametric
- List membership requires equality
• member: [w] -> w -> Bool   (for “good” w)

- Sorting requires ordering
• sort: [w] -> [w]   (for w supporting <,>,...)

•What are problems in supporting it in a PL?
- Static type inference makes it hard!

- Why are Haskell type classes a solution?



Overloading Arithmetic

• First try:  allow fcns w/overloaded ops to define 
multiple functions
- square x = x * x
• versions for Int -> Int and Float -> Float

- But then 
• squares (x,y,z) = (square x, square y, square z)

• ... has 8 different versions!!

- Too complex to support!

ML & Overloading

• Functions like +, * can be overloaded, but not 
functions defined from them!

• 3 * 3             -- legal

• 3.14 * 3.14       -- legal

• square x = x * x  -- Int -> Int

• square 3          -- legal

• square 3.14       -- illegal 

- To get other functions, must include type:
• squaref (x:float) = x * x   -- float -> float

Equality

• Equality worse!
- Only defined for types not containing functions, files, 

or abstract types -- why?

- Again restrict functions using ==

• ML ended up defining eq types, with special 
mark on type variables.
- member: ‘‘a -> [‘‘a] -> Bool

- Can’t apply to list of functions

Type Classes
• Proposed for Haskell in 1989.

• Provide concise types to describe overloaded 
functions -- avoiding exponential blow-up

• Allow users to define functions using overloaded 
operations: +, *, <, etc.

• Allow users to declare new overloaded functions.
- Generalize ML’s eqtypes

- Fit within type inference framework



Recall ...

• Definition of quicksort & partition: 
 

• Allowed partition to be parametric
- Steal this idea to pass overloaded functions!

- Implicitly pass argument with any overloaded 
functions needed!!

partition lThan (pivot, []) = ([],[])
partition lThan (pivot, first : others) =
  let
    (smalls, bigs) = partition lThan (pivot, others)
  in
    if (lThan first pivot)
      then (first:smalls, bigs)
      else (smalls, first:bigs)

Example
• Recall

class Order a where 
   (<) :: a -> a -> Bool  
   (>) :: a -> a -> Bool 
   ...

• Implement w/dictionary:
data OrdDict a = MkOrdDict (a -> a -> Bool)  
                                                    (a -> a -> Bool) ...

getLT (MkOrdDict lt gt ...) = lt

getGT (MkOrdDict lt gt) = gt 
...

Using Dictionaries
partition dict (pivot, []) = ([],[])
partition dict (pivot, first : others) =
  let
    (smalls, bigs) = partition dict (pivot, others)
  in
    if ((getLT dict) first pivot)
      then (first:smalls, bigs)
      else (smalls, first:bigs)

partition:: OrdDict a -> [a] -> ([a].[a])

Compiler adds dictionary parameter to all calls of partition.

Reports type of partition (w/out lThan parameter) as 
  (Ord a) => [a] -> ([a].[a])

Instances

• Declaration
- instance Show TrafficLight where   

    show Red = "Red light"   
    show Yellow = "Yellow light"   
    show Green = "Green light"  

- Creates dictionary for “show” w/def. above



Implementation Summary
• Compiler translates each function using an overloaded 

symbol into function with extra parameter: the dictionary.

• References to overloaded symbols are rewritten by the 
compiler to lookup the symbol in the dictionary.

• The compiler converts each type class declaration into a 
dictionary type declaration and a set of selector functions.

• The compiler converts each instance declaration into a 
dictionary of the appropriate type.

• The compiler rewrites calls to overloaded functions to 
pass a dictionary.  It uses the static, qualified type of the 
function to select the dictionary.

Multiple Dictionaries

• Example:
- squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)

- squares(x,y,z) = (square x, square y, square z)

• goes to:
- squares (da,db,dc) (x, y, z) =  

                         (square da x, square db y, square dc z)

Compositionality

• Build compounds from simpler
- class Eq a where 

     (==) :: a -> a -> Bool

- instance Eq Int where 
  (==) = intEq     -- where intEq primitive equality

- instance (Eq a, Eq b) => Eq(a,b) where 
    (u,v) == (x,y)     =    (u == x) && (v == y)

- instance Eq a => Eq [a] where 
  (==) []     []     = True 
  (==) (x:xs) (y:ys)   =   x==y && xs == ys 
  (==) _      _      = False

Subclasses

• Example:
- class (Eq a) => Num a where  

   (+) :: a -> a -> a 
   ...    other arith ops 
    fromInteger :: Integer -> a  
• instance of Num a must be Eq a

• dictionary for Eq is part of that for Num



What about Literals?

• fromInteger in Num class makes it possible
- data Complex a = MkCmpx a a     deriving Eq

- instance Show a => Show (Complex a) where 
   show (MkCmpx rv iv) = (show rv)++" + "++ (show iv)++"i"

- instance Num a => Num (Complex a) where 
  (MkCmpx r1 i1) + (MkCmpx r2 i2) =  
                                             MkCmpx (r1+r2) (i1+i2) 
   ... 
  fromInteger n = MkCmpx (fromInteger n) 0

- fromInteger will be called implicitly when needed

Using Literals

• Example:
- c1 = 1 :: Complex Int

- c2 = 2 :: Complex Int

- c3 = MkCmpx 1 3

- c4 = c1 + c3

- c5 = c1 * c2

- c6 = c3 + 47

Type Inference

• Type inference infers a qualified type Q => T
- T is a Hindley Milner type, inferred as usual

- Q is set of type class predicates, called a constraint

• Consider the example function:
- example z xs =  case xs of 

     []     ->  False 
     (y:ys) ->  y > z || (y==z && ys == [z])

- Type T is    a -> [a] -> Bool

- Constraint Q is  { Ord a, Eq a, Eq [a]}

Simplifying Constraints

• Constraint sets Q can be simplified:
- Eliminate duplicates
• {Eq a, Eq a} simplifies to {Eq a}

- Use an instance declaration
• If we have instance Eq a => Eq [a], then {Eq a, Eq [a]} 

simplifies to {Eq a}

- Use a class declaration
• If we have class Eq a => Ord a where ...,  

then {Ord a, Eq a} simplifies to {Ord a}

• Thus, {Ord a, Eq a, Eq[a]} simplifies to {Ord a}



Inference

• As a result:
- example z xs =  case xs of 

     []     ->  False 
     (y:ys) ->  y > z || (y==z && ys == [z])

- Type T is    a -> [a] -> Bool

- Constraint Q is  { Ord a, Eq a, Eq [a]}, 
which simplifies to {Ord a}

- So,   example :: (Ord a) => a -> [a] -> Bool

Reporting Errors

• Why this error message?

*Main> 'a' + 1
<interactive>:1:0:
    No instance for (Num Char)
      arising from a use of `+' at <interactive>:1:0-6
    Possible fix: add an instance declaration for (Num Char)
    In the expression: 'a' + 1
    In the definition of `it': it = 'a' + 1

Type Classes w/Constructors

• Recall Functor class:

- [] here means operator that takes a type and makes it 
into a list type

- f is a type function, not a type!  Monads similar!

class Functor f where
  fmap :: (a -> b) -> f a -> f b

instance Functor ([]) where
  fmap = map

Trees are functors too!

data Tree a = Niltree | Maketree (a, Tree a, Tree a) 
                            deriving Show

instance Functor Tree where
   fmap f Niltree = Niltree
   fmap f (Maketree (root, left, right)) =
           Maketree (f root, fmap f left, fmap f right)



Type Classes ≠ OOP Classes
• Dictionaries and method suites are similar
- In OOP, a value carries a method suite.

- With type classes, the dictionary travels separately

• Method resolution is static for type classes, 
dynamic for objects.

• Dictionary selection can depend on result type
-      fromInteger :: Num a => Integer -> a

• Based on “ad hoc” polymorphism
- like use of interfaces in Java.

Type Inference Oddity

• Type inference algorithms have difficulties with 
polymorphism
- Already seen can’t have polymorphic params

- Worse when use type classes

Weird Example
sqr x = x * x
h = sqr
*Main> :t sqr
sqr :: (Num a) => a -> a
*Main> :t h
h :: Integer -> Integer
*Main> h 1.4

Crash!!!!

s x = sqr x
*Main> :t s
s :: (Num a) => a -> a
*Main> s 1.4
          1.96

η-expansion often solves problem
Alternatively, declare h with full type.

h defined in interactive mode is fine!

Ack!!

• The monomorphism restriction is probably the 
most annoying and controversial feature of 
Haskell's type system. All seem to agree that it 
is evil - it is commonly called "The Dreaded 
Monomorphism Restriction" - but whether or 
not it is considered a necessary evil depends on 
who you ask.

- wiki.haskell.org/Monomorphism_restriction

See the article for a better discussion



The monomorphism restriction 

Rule 1.
We say that a given declaration group is unrestricted if and only if:
(a):
every variable in the group is bound by a function binding or a simple pattern binding 
(Section 4.4.3.2), and
(b):
an explicit type signature is given for every variable in the group that is bound by simple 
pattern binding.
The usual Hindley-Milner restriction on polymorphism is that only type variables that do 
not occur free in the environment may be generalized. In addition, the constrained type 
variables of a restricted declaration group may not be generalized in the generalization step 
for that group. (Recall that a type variable is constrained if it must belong to some type 
class; see Section 4.5.2.)

Rule 2.
Any monomorphic type variables that remain when type inference for an entire module is 
complete, are considered ambiguous, and are resolved to particular types using the 
defaulting rules (Section 4.3.4).

Often prevent problems by writing type explicitly!

Scope -- a bit out of order ...

Scope

• Range of instructions where identifier is known

• Static:  Scope associated with static text of 
program.

• Dynamic:  Scope associated with execution path 
of program.

Hole in Scope (Static)

program ...
    var M: integer;
    ....
    procedure A ...
        var M: array [1..10] of real;
        begin
            ...
        end;
begin
    ...
end.



Static vs Dynamic Scope

program ...
    var A : integer;

    procedure Y(B: integer);
        begin
            ...; 
            B := A + B; 
            ...
        end; {Y}

   procedure Z(...);
        var A: integer;
        begin
            ...; 
            Y(...); 
            ...
        end; {Z}      
   begin {main}
        ...; 
        Z(...);
        ...
   end.

Symbol Table:  Built compile-time or run-time?

which 
A?


