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Programming Language Rankings Top Combined
1 JavaScript
2 Java
3 Python
4 PHP
5 C#
6 C++
7 CSS
8 Ruby
9 C
9 Objective-C

11 Swift
12 Scala
12 Shell
14 Go
14 R
16 TypeScript
17 PowerShell
18 Perl
19 Haskell
20 Lua



Tiobe Index

2014 -> 2019
Scala #41 -> 29

 Haskell #44 -> 39
ML #25 -> 48
Go #38 -> 18

Dart #42 -> 25
Scheme #48 -> 36

Objective C # 3 -> 10
Swift # 18 -> 20

Changes over Time

Static Type Checking

• Static type-checkers for strongly-typed 
languages (i.e., rule out all “bad” programs) 
must be conservative:
- Rule out some programs without errors.

• if (program-that-could-run-forever) { 
     expression-w-type-error;  
} else { 
    expression-w-type-error; 
}

Type checking
• Most statically typed languages also include 

some dynamic checks.  
- array bounds.

- Java’s instanceof

- typecase or type casts

• Pascal statically typed, but not strongly typed
- variant records (essentially union types), dangling pointers

• Haskell, ML, Java strongly typed

• C, C++ not strongly typed



Type Compatibility

•When is x := y legal?
Type T = Array [1..10] of Integer; 
Var A, B : Array [1..10] of Integer; 
C : Array [1..10] of Integer; 
D : T; 
E : T; 

• Name EquivalenceA (Ada)

• Name Equivalence (Pascal, Modula-2, Java)

• Structural Equivalence (Modula-3, Java arrays 
only)

Structural Equivalence

• Can be subtle:
T1 = record a : integer; b : real end; 
T2 = record c : integer; d : real end; 
T3 = record b : real; a : integer end; 

•Which are the same? 
T = record info : integer; next : ^T end; 
U = record info : integer; next : ^V end; 
V = record info : integer; next : ^U end;

Type Checking & Inference

•Write explicit rules.  Let a, b be expressions
- if a, b:: Integer,  

then a+b, a*b, a div b, a mod b:: Integer

- if a, b:: Integer then a < b, a = b, a > b : Bool

- if a, b: Bool then a && b, a || b: Bool

- ...

Formal Type-Checking Rules

• Can rewrite more formally.

• Expression may involve variables, so type check 
wrt assignment E of types to variables.
- E.g., E(x) = Integer, E(b) = Bool, ...

E(x) = t
––––––––––––––

E |- x : t

E |- a : int, E |- b : int
––––––––––––––––––––––––––––

E |- a+b : int

Hypothesis
Conclusion



Can write formally
Function Application:

E |- f: σ → τ,     E |- M : σ
––––––––––––––––––––––

E |- f(M) : τ

Function Definition:
E ∪ {v:σ} |- Block : τ

––––––––––––––––––––––––
E |- fun (v:σ) Block : σ → τ

Can write for all language constructs.  
Based on context free grammar.

Can read off type-checking algorithm. More later!

Haskell Type Inference
How does Haskell know what you meant?

Haskell Type Inference

1. An identifier should be assigned the same type 
throughout its scope. 

2. In an “if-then-else” expression, the condition must have 
type Bool and the “then” and “else” portions must have 
the same type. The type of the expression is the type of 
the “then” and “else” portions. 

3. A user-defined function has type a → b, where a is the 
type of the function’s parameter and b is the type of its 
result. 

4.In a function application of the form f x, there must be 
types a and b such that f has type a → b, x has type a, 
and the application itself has type b. 

Examples of Type Inference

map = \ f -> \ l -> 
         if l == [] then [] 
             else (f (head l)): (map f (tail l)) 

• Use rules to deduce types:

- map:: a → b  because function

- f :: a,  \ l -> ... :: b,  Thus b = c → d

- l :: c,  if l = [] then ... :: d

- ...
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double(f,x) = f(f(x))
or equivalently 

double = \ (f,x) -> f(f(x))

@ = application Outcome of Type Inference

• Overconstrained:  no solution
Prelude> tail 7

<interactive>:1:5:
    No instance for (Num [a])
      arising from the literal `7' at <interactive>:1:5
    Possible fix: add an instance declaration for (Num [a])
    In the first argument of `tail', namely `7'
    In the expression: tail 7
    In the definition of `it': it = tail 7

• Underconstrained:  polymorphic

• Uniquely determined

By the way, ...

• Inference due to Hindley-Milner

• SML/Haskell type inference is doubly 
exponential in the worst case!

• Can write down terms tn of length n such that 
the length of the type of tn is of length 22n

• Luckily, it doesn’t matter in practice, 
- no one writes terms whose type is exponential in the 

length of the term!

Restrictions on ML/Haskell 
Polymorphism

• Type (a → b) →([a] → [b]) stands for:

- ∀a. ∀b. (a → b) →([a] → [b])

• Haskell functions may not take polymorphic 
arguments.  E.g., no type:
- ∀b. ((∀a.(a → a)) →(b → b))

- define:  foo f  (x,y) = (f x, f y) 

- id z = z

- foo id (7, True)  -- gives type error!

- Type of foo is only (t -> s) -> (t, t) -> (s, s)



Restrictions on Implicit 
Polymorphism

Polymorphic types can be defined at top level or in let clauses, 
but can’t be used as arguments of functions

   id x = x 
      in (id "ab", id 17)

OK, but can't write

   test g = (g “ab”, g 17)

Can’t find type of test w/unification.
More general type inference is undecidable.

Explicit Polymorphism

Easy to type w/ explicit polymorphism:
    
  test (g: forall t.t -> t) = (g “ab”, g 17) 
     in test (\t => \(x:t) -> x)

Languages w/explicit polymorphism:
Clu, Ada, C++, Eiffel, Java 5, C#, Scala, Grace

Explicit Polymorphism

• Clu, Ada, C++, Java

• C++ macro expanded at link time rather than 
compile time.

• Java compiles away polymorphism, but checks 
it statically.

• Better implementations keep track of type 
parameters.

Summary

• Modern tendency: strengthen typing & avoid 
implicit holes, but leave explicit escapes

• Push errors closer to compile time by:
- Require over-specification of types

- Distinguishing between different uses of same type

- Mandate constructs that eliminate type holes

- Minimizing or eliminating explicit pointers

• Holy grail: Provide type safety, increase flexibility



Polymorphism vs Overloading
• Parametric polymorphism
- Single algorithm may be given many types

- Type variable may be replaced by any  type
• Examples: hd, tail ::[t]->t ,  map::(a->b)->[a]->[b]

• Overloading
- A single symbol may refer to more than one algorithm.

- Each algorithm may have different type.

- Choice of algorithm determined by type context.
• (+) has types Int → Int → Int and Float → Float → Float, but not 

t→t→t for arbitrary t.

Why Overloading?

• Many useful functions not parametric
- List membership requires equality
• member: [w] -> w -> Bool   (for “good” w)

- Sorting requires ordering
• sort: [w] -> [w]   (for w supporting <,>,...)

•What are problems in supporting it in a PL?
- Static type inference makes it hard!

- Why are Haskell type classes a solution?

Overloading Arithmetic

• First try:  allow fcns w/overloaded ops to define 
multiple functions
- square x = x * x
• versions for Int -> Int and Float -> Float

- But then 
• squares (x,y,z) = (square x, square y, square z)

• ... has 8 different versions!!

- Too complex to support!

ML & Overloading

• Functions like +, * can be overloaded, but not 
functions defined from them!

• 3 * 3             -- legal

• 3.14 * 3.14       -- legal

• square x = x * x  -- Int -> Int

• square 3          -- legal

• square 3.14       -- illegal 

- To get other functions, must include type:
• squaref (x:float) = x * x   -- float -> float



Equality

• Equality worse!
- Only defined for types not containing functions, files, 

or abstract types -- why?

- Again restrict functions using ==

• ML ended up defining eq types, with special 
mark on type variables.
- member: ‘‘a -> [‘‘a] -> Bool

- Can’t apply to list of functions

Type Classes

• Proposed for Haskell in 1989.

• Provide concise types to describe overloaded 
functions -- avoiding exponential blow-up

• Allow users to define functions using overloaded 
operations: +, *, <, etc.

• Allow users to declare new overloaded functions.
- Generalize ML’s eqtypes

- Fit within type inference framework

Recall ...
• Definition of quicksort & partition: 
 

• Allowed partition to be parametric
- Steal this idea to pass overloaded functions!

- Implicitly pass argument with any overloaded 
functions needed!!

partition lThan (pivot, []) = ([],[])
partition lThan (pivot, first : others) =
  let
    (smalls, bigs) = partition lThan (pivot, others)
  in
    if (lThan first pivot)
      then (first:smalls, bigs)
      else (smalls, first:bigs)

Example
• Recall

class Order a where 
   (<) :: a -> a -> Bool  
   (>) :: a -> a -> Bool 
   ...

• Implement w/dictionary:
data OrdDict a = MkOrdDict (a -> a -> Bool) (a -> a -> 
Bool) ...

getLT (MkOrdDict lt gt ...) = lt

getGT (MkOrdDict lt gt) = gt 
...



Using Dictionaries
partition dict (pivot, []) = ([],[])
partition dict (pivot, first : others) =
  let
    (smalls, bigs) = partition dict (pivot, others)
  in
    if ((getLT dict) first pivot)
      then (first:smalls, bigs)
      else (smalls, first:bigs)

partition:: OrdDict a -> [a] -> ([a].[a])

Compiler adds dictionary parameter to all calls of partition.

Reports type of partition (w/out lThan parameter) as 
  (Ord a) => [a] -> ([a].[a])

Instances

• Declaration
- instance Show TrafficLight where   

    show Red = "Red light"   
    show Yellow = "Yellow light"   
    show Green = "Green light"  

- Creates dictionary for “show”

Implementation Summary
• Compiler translates each function using an overloaded 

symbol into function with extra parameter: the dictionary.

• References to overloaded symbols are rewritten by the 
compiler to lookup the symbol in the dictionary.

• The compiler converts each type class declaration into a 
dictionary type declaration and a set of selector functions.

• The compiler converts each instance declaration into a 
dictionary of the appropriate type.

• The compiler rewrites calls to overloaded functions to 
pass a dictionary.  It uses the static, qualified type of the 
function to select the dictionary.

Multiple Dictionaries

• Example:
- squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)

- squares(x,y,z) = (square x, square y, square z)

• goes to:
- squares (da,db,dc) (x, y, z) =  

                         (square da x, square db y, square dc z)


