
CSCI 131 Spring 2019

Homework 9

Due Thursday, 4/11/2019

Several questions on this homework involve ML programs. However, they behave identically to
equivalent Haskell programs. If you have any problem understanding them, please let me know.

You will be turning in two files for this assignment, named Hmwk9.pdf and Hmwk9.hs They should
be turned in as usual at https://submit.cs.pomona.edu/2019sp/cs131

The Haskell file should include only the program called for in problem 3b. If that file contains any
test code, please comment it out before turning it in as there may otherwise be name clashes with my
test code.

The grading for this assignment will be based on both the Hmwk9.pdf and Hmwk9.hs files that you
turn in

1. The Hmwk9.pdf file should contain the complete solutions to all problems (including the Haskell
program called for in problem 3b).

2. The Hmwk9.hs file should contain the program for problem 3b. The first line should be:

module Hmwk9 where

If the Hmwk9.hs file runs without crashing on the test file given in problem 3b, and you correctly
spell your name on both the hs and pdf files, you will receive 10 points credit (whether or not the
answer printed is correct). All of the other points listed (including the first 20 points listed for problem
3) will be based on the correctness of the materials in the pdf file.

In particular, if you spell your name correctly in both files, and the program for 3b runs without
crashing, but you neglect to include the code in the pdf file, then you will receive 10 points for running,
but lose all 10 points for the correctness of your code. Please be careful to follow the instructions.

1. (15 points) Exceptions and Recursion

Please do problem 8.4 from Mitchell, page 230.

2. (10 points) Tail Recursion and Exception Handling

Please do problem 8.5 from Mitchell, page 230.

3. (20+10 points) Modularity of Concrete Data Types

In lectures 12 and 13 we discussed an environment-based interpreter for PCF. It is available on-
line from the course web page by following the link to “Programs from lecture”. In this problem,
I would like you to modify that program in order to determine how easy it is to add new features.

(a) Please add a new function prettyprint that takes a PCF term and returns a string con-
taining a nice readable version of the term. It should have type prettyprint :: Term ->

[Char]

Note: The data type Term is given in the PCF parser, available from the same programs
page. For this problem we are going to ignore the PCF parser. Thus remove the import
of ParsePCF from the interpreter code. To make up for this you will need to copy in the
definition of Term:

1

CSCI 131 Spring 2019

data Term = AST_ID String | AST_NUM Int | AST_BOOL Bool

| AST_FUN (String,Term) | AST_APP (Term, Term)

| AST_SUCC | AST_PRED | AST_ISZERO

| AST_IF (Term, Term, Term) | AST_REC (String, Term)

| AST_ERROR String deriving (Show,Eq)

Note that when you do part b of this problem you will need to add AST SUM (see part b) to
the export list of that module.

The string returned by prettyprint should contain parentheses to indicate precedence. For
example, the term

AST_IF(AST_BOOL True,AST_NUM 5, AST_APP(AST_SUCC, AST_NUM 2))

should be pretty-printed as

if True then 5 else (succ 2)

whereas

AST_APP(AST_IF(AST_BOOL True,AST_PRED, AST_SUCC), AST_NUM 2)

should be pretty-printed as

(if True then pred else succ) 2

(b) Please add a new term to PCF representing sums of integers. I.e., add a new clause to the
definition of term of the form AST SUM (Term, Term) so AST SUM(a,b) represents a + b.

Modify the previous program that contains both the newinterp function to evaluate terms
and prettyprint to accommodate the new term.

Please do not turn in the results of part a. I only want a single program that has the
functionality specified in parts a and b. That is, the function newinterp :: Term -> Env

-> Value should handle AST SUM terms and the prettyprint function should be included in
the file (and pretty-print should handle AST SUM).

When done, please test your program with a file with the following contents:

import Hmwk9

fc = AST_APP(AST_SUCC, AST_SUM(AST_NUM 5, AST_NUM 3))

main :: IO()

main = do

putStr ("The value of " ++ (prettyprint fc))

putStrLn (" is " ++ show (newinterp fc []))

If it works properly, it should print out: The value of succ (5 + 3) is NUM 9. Obviously
you should test your program on more than this, but checking this will at least ensure that
your program will not crash my test code for your program (keeping you from getting your
10 points).

2

CSCI 131 Spring 2019

(c) I am not asking you to modify the PCF parser code that is available on-line. However, please
describe at a high level what would have to be done to modify that code.

(d) Discuss briefly the different impacts of adding a new function (like prettyprint) versus
adding a new term (like AST SUM to the data type in the previous two parts of this problem.

Note: If you wish, you need only turn in the code from the part b of this question rather than
separate code for each of parts a and b. Of course you should also include your answers for
parts c and d.

4. (25 points) “Growing a Language” Reading

Please read the short paper entitled “Growing a Language” from the auxiliary reading page. The
author, Guy Steele, is one of the designers of Java, and this was his keynote talk at the major
American conference on object-oriented languages (OOPSLA) in 1998. You may find it even more
interesting to watch his talk on-line (see the link on the auxiliary reading page). See if you can
figure out what he is doing before he explains it!

This paper includes a discussion of why some items were originally left out of Java when they
designed the language, but likely should have been included. It also gives some insight into
programming language design in general. The following questions will guide you through the
paper:

(a) What is wrong with designing/using a small language like Lisp?

(b) What is wrong with designing/using a huge language (C++)?

(c) What was Steele’s goal in designing Java?

(d) Why does Steele feel that overloaded operators are important. Contrast this with his convic-
tion (expressed elsewhere) that overloaded methods might have been left out without much
harm.

(e) Discuss why generics might have been left out originally, but why he now feels they are
important.

Write a separate paragraph discussing each of these items. A few sentences on each part is
sufficient.

We will spend some time discussing these points after the homeworks are turned in.

5. (15 points) Smalltalk Reading

Read “Design Principles Behind Smalltalk” by Dan Ingalls (available on the “links” page).

Think about the Principles set forth. Which are new? Which have we seen before? What
principles are remniscent of Lisp? What is the scope of the language (ie, what is included in its
definition)? A few sentences on each item is sufficient— clarity is more important than length of
answer.

3

