
CSCI 131 Spring 2019

Homework 6

Due Thursday, 3/7/19, at midnight.

For this assignment I would like you to turn in a zipped folder with two files. The first file should
be a LaTeX document with the complete solutions to all problems (including code). The second file
should have suffix “hs” and contain all of the Haskell programs you are writing for this assignment.
All functions should be named exactly as specified in this assignment. We will be testing your code by
loading this file and running our code on it. The first line of your Haskell file should be:

module Hmwk6 (Token(NUMBER, Plus, Minus, Mult, Div, Neg),

IsStack,MyStack(EmptyStack,MkStack),eval,newinterp) where

Putting this line in will allow us to automatically test your program. Leaving it out will result in
all of our tests failing, and you receiving a correspondingly low score, making all of us sad! As usual,
test your program by loading the “hs” file once you have fully commented your code. You can test your
code yourself using the file MT6.hs, which has been loaded into Piazza (as an announcement).

Name your two files Hmwk6.hs and Hmwk6.pdf .
Before turning in your homework, first make sure you ”module” statement matches that above and

that you have included your name in the contents of each of the files. Next compress your folder into a
zip file. Then go to https://submit.cs.pomona.edu/2019sp/cs131 and click on the assignment 6 on
that page and follow the instructions to submit your work.

Be sure to test your programs one last time before submitting. I’ve seen students mess up when
commenting code in a way that causes everything to break. Code that doesnt compile will get very
little credit. We will be using some automatic testing, and code that doesnt compile brings everything
to a halt. With a large class we will not have time to go in to manually tweak your code to make it
work.

1. (20 points) Table-driven parsing

Early in the semester we discussed the fact that if-then-else expressions in C, C++, Java, and
Pascal are ambiguous. Suppose we use the following grammar for a very simple language with
conditional statements:

<stmt> ::= if (bool) <stmt> <possElse> | assn

<possElse> ::= else <stmt> | e

where e stands for the empty string.

In this grammar, “if”, “bool”, “assn”, and “else” are tokens, and hence terminals of the
grammar, while <stmt> and <possElse> represent non-terminals. (In a more realistic language,
“bool” would be a non-terminal that would generate Boolean valued expressions, while “assn”
would generate assignment statements. However, it makes the problem easier if we just let them
be terminals.

(a) Show that the string “if (bool) if (bool) assn else assn” has two distinct parse trees.

(b) Compute the first and follow sets for the grammar, and build a parse table like that in
Lecture 11 (see online notes).

1

CSCI 131 Spring 2019

(c) Explain how the parse table suggests that the grammar will be problematic to parse using
predictive parsing like that explained in class.

(d) How could we manually modify the parse table so that, if used as the basis for a recur-
sive descent or stack-based top down parser, it always chooses a parse according to the
C/C++/Java/Pascal rules (i.e., always associate an “else” with the nearest “if”)?

2. (10 points) Static and Dynamic Scope

Please do problem 7.8 from Mitchell, page 196.

3. (10 points) Eval and Scope

Please do problem 7.10 from Mitchell, page 197. You only need to do parts b and c, but please
read part a so that the rest makes sense. (Note that the “eval” construct discussed in this problem
is in Javascript as well.)

4. (18 points) Lambda Calculus and Scope

Please do problem 7.11 from Mitchell, page 198.

5. (10 points) Type Classes

Type classes can be used to help write functions that are agnostic as to the implementation of
data types. For example, we can write the following type class:

class IsStack stack where

push:: a -> stack a -> stack a

pop:: stack a -> stack a

top:: stack a -> a

isEmpty:: stack a -> Bool

This says that a type constructor stack can be in class IsStack if it supports polymorphic
functions push, pop, top, and isEmpty.

Please define two instances of IsStack, one using regular Haskell lists to form the stack, and the
second using the following data type definition:

data MyStack a = EmptyStack | MkStack a (MyStack a) deriving Show

For example, the code to make lists into an instance of IsStack begins:

instance IsStack [] where ...

To test out the type class, write a Haskell function to evaluate postfix arithmetic expressions that
uses the same code for any implementation of stacks. The type of the function should be:

eval::(IsStack stack) => [Token] -> stack Int -> Int

where

2

CSCI 131 Spring 2019

data Token = NUMBER Int | Plus | Minus | Mult | Div | Neg deriving Show

Background: Recall that an arithmetic expression is in postfix form if the operator follows the
two operands. Thus (3+5)*7 in infix would be written as 3 5 + 7 * in postfix form, while 6 + (4
- 2) would be written 6 4 2 - +.

Postfix expressions can be evaluated quite simply on a stack using the following rules.

(a) A number is always pushed onto the run-time stack.

(b) When a binary operator is encountered, pop off the top two numbers on the stack and replace
them by the result of applying the operator to them (but be careful to get the order correct!!),
and then pushing the result back onto the stack.

(c) When a unary operator is encountered, pop off the top item on the stack, apply the operator,
and then push the result back onto the stack.

(d) When the expression has been processed then there should be a single number left on the
stack, and it is the answer.

Please write the arithmetic expression as a list of tokens in postfix order. Sample representations
of the terms above would be [NUM 3, NUM 5, Plus, NUM 7, Mult] and [NUM 6, NUM 4, NUM

2, Minus, Plus].

Include sample code that shows that the eval function works with both instances of the IsStack

class.

6. (20 points) Interpreters

The parser for PCF accepts let expressions of the form let vble = term in body end, but
transforms them into syntax trees for function applications. That is, the above let expression is
translated into the syntax tree for

((fn vble => body) term)

In this problem I would like you to start with a modified parser for PCF that takes let expressions
like that above and parses it into an abstract syntax tree of the form AST LET(vble,term,body).

In this problem you will extend the environment interpreter for PCF to interpret this term cor-
rectly.

(a) Begin by writing the computation rule using environments for let expressions. This should
be similar to the rules expressed in slides 8 – 10 of Lecture 17.

(b) Extend the environment interpreter in PCFEnvinterpreter.hs (available on the web page
with “Programs from Lecture”) to correctly interpret terms of the form AST LET(vble,term,body).
A parser that generates these AST LET terms is available on that same web page. Test your
program with let expressions like let x = 2 in succ x end.

3

