Homework 5

Due Thursday, 2/28/2019

No programming this week, so just turn in a pdf to https://submit.cs.pomona.edu/2019sp/cs131.

1. (20 points) Lazy Evaluation and Parallelism

Please do problem 4.11 from Mitchell, page 87.

The function g should be defined as follows (there may be a typo in the book, depending on the printing):

2. (10 points) Parse Graph

Use the parse graph below to calculate the Haskell type for the function. (This is problem 6.5 on page148 of the revised Chapter 6.)

fun f(g,h) = g(h) + 2;

Be sure to show your work!

3. (10 points) Type Inference and Bugs

What is the type of the following Haskell function:

append([],1) = 1
append (x:1,m) = append(1,m)

Write one or two sentences to explain succinctly and informally why append has the type you give. This function is intended to append one list onto another. However, it has a bug. How might knowing the type of this function help the programmer to find the bug?

4. (10 points) Type Inference and Debugging

Please do problem 6.8 from Mitchell's revised Chapter 6, page 149.

NOTE: There is an important typo in the problem. The (incorrect) definition of **reduce** should be:

reduce(f,[x]) = [x]
reduce(f,(x:y)) = f(x,reduce(f,y))

Notice the extra square brackets in the first clause! In your answer to this problem, explain how to fix the definition.

5. (15 points) Dynamic Typing in Haskell

Please do problem 6.11 from Mitchell's revised Chapter 6 page 151. For part c, assume that **car** returns **nil** when applied to anything other than a **Cons** cell.