
CSCI 131 Spring 2019

Homework 12

Due Friday, 5/3/2019

Please turn in your homework solutions as usual at https://submit.cs.pomona.edu/2019sp/cs131.
You will be writing Grace programs for this assignment, so you will need to zip up the .grace files with
your pdf before turning them both in. As usual be sure you turn in copies of all the code in your pdf
file as well as the .grace files. We will have a very short window to grade this homework, so messing up
the files turned in may result in not getting credit for your work.

Because this is your last homework and we have not yet covered all of the Java con-
structs to do the last three problems, you will have an extra day to work on this assign-
ment. I urge you to work on the Grace programs early on – finishing them before Tuesday,
leaving your self the end of the week to work on the Java-related questions.

1. Grace program (20 points)

Look over the Grace papers on the CS131 “Links to useful information” web page before attempt-
ing the following programs. Use the Grace Draft Specification as a reference. Note that some of
the syntax in the papers is a bit out of date as the language has evolved over time. In particular,
class names no longer have “.” in them. Thus use the language spec as the definitive source. You
may also find the introductory textbook, Programming with Grace, useful as a source of sample
programs.

You can write and run Grace programs by going to the web page at http://web.cecs.pdx.edu/

~grace/ide/. I recommend that you use Chrome for this as different browsers render the pages
differently and the software has been tested most extensively in Chrome. See the instructions in
lecture 24 on how to write and run Grace programs in the browser.

Please use the names suggested in the problem for the file so that we can easily test them. While
you should write test code for your programs, they should go in a separate file that you may name
as you like. However, we will be using our own test code for your programs and it will expect
your files and classes, methods, etc. to have exactly the names and types specified in the problem.
You will lose points if your code does not follow those conventions.

Warning: Minigrace files may not contain tabs. The only white spaces allowed are spaces and
returns (generated by the “enter” key). You will receive error messages if your file contains any
other white space.

Write a Grace program that defines a class representing mutable (updatable) sets of Numbers.
Your sets should implement the following type:

type NumberSet = {

contains(n:Number) -> Boolean

add(n:Number) -> Done

union(s:NumberSet) -> Done

intersection(s:NumberSet) -> Done

isEmpty -> Boolean

asString -> String

do(action) -> Done

}

1



CSCI 131 Spring 2019

Notice that the operations add, union, and intersection all modify the existing set rather
than create a new one. Please name the file NumberSet.grace. Your class should be named
aNumberSet, should take no parameters, and should construct an empty set.

Grace actually has a library to represent sets, but I don’t want you to use it. Your implementation
should use an immutable list (use our implementation from class – available on the class web page)
as an instance variable to hold the elements of the list. (Do NOT inherit from it.) Remember that
sets do not have duplicates of elements, so your list implementation should not include duplicates.

The file with your copy of my list implementation should be named list.grace, and your file
NumberSet.grace should import it. Thus the first line of NumberSet.grace should be

import "list" as myList

where you can replace myList by any legal identifier name. This is important as I will test your
code by loading my copy of list.grace with your NumberSet.grace and my test code. My test
code will import your code to test it, so all the pieces must fit together properly.

Show that your program works by creating a new file, where the first line of the new file is

import "NumberSet" as mySet

In that new file, build a couple of sets, and exercise the operations (showing corner cases work)
and printing the results. Feel free to include the file with your test code. While I won’t normally
run it, if there are issues I can run your code to see if there is anything at all that works.

Because this program represents mutable sets, there is no need for separate representations for
empty and non-empty sets. Those variations will be taken care of by the list instance variable.

2. (15 points) More Grace

Write a Grace program that represents a tree holding a number at each vertex. I suggest that
you emulate the implementation of lists from class (remember that Grace does not have a null
element!). Here is the type of the tree (and a type for arguments of the methods):

type Tree = {

// return the number of nodes in the tree.

size -> Number

// return the height of the tree

height -> Number

// return whether the tree is empty

isEmpty -> Boolean

// Create a new tree by applying the unary operation blk on each of the elements

// in the tree to form a new tree of the same shape.

map (blk: Function1[[Number,Number]]) -> Tree

2



CSCI 131 Spring 2019

// Perform an inorder traversal of the tree, applying unary operation blk

// to each of the elements of the tree.

doInorder (blk: Procedure1[[Number]]) -> Done

}

In the above, Function1 and Procedure1 are built-in types for Grace. They are defined in the
standard library as follows:

type Function1[[S,T]] = {

apply (s: S) -> T

}

type Procedure1[[S]] = {

apply (s: S) -> Done

}

The first represents an anonymous function from S to T, while the second is a procedure that takes
an argument of type S. As an example s = {x: Number -> x * x} has type Function1[[Number,Number]]
and s.apply(12) returns 144. Do not copy the definitions of these types in your code as they are
already defined!

As you can see from the above definitions, type parameters in Grace are written inside double
square brackets.

Your program should define an empty tree object named emptyTree and contain a class
aTreeWithRoot (n: Number) left (l: Tree) right (r: Tree) that constructs a new class
with root holding n and left and right subtrees given by l and r. Place your code in a file named
Trees.grace. My test code will be importing Trees, so make sure everything is named properly

As you can see from the operations in the type, the tree is immutable.

As usual, write and include code to test it in a separate file. In particular, build an interesting
tree myTree and then execute

myTree.doInorder {n -> print (n)}

var count:Number := 0

myTree.doInorder {n -> count := count +1}

print(count)

3. (10 points) Atomicity & Race Conditions

The DoubleCounter class defined below has methods incrementBoth and getDifference. As-
sume that DoubleCounter will be used in multi-threaded applications.

class DoubleCounter {

protected int x = 0, y = 0;

public int getDifference() {

return x - y;

3



CSCI 131 Spring 2019

}

public void incrementBoth() {

x++;

y++;

}

}

There is a potential data race between incrementBoth and getDifference if getDifference is
called between the increment of x and the increment of y. For the following questions, assume that
the “++” operators are atomic (in reality they are not) and that each thread calls incrementBoth
exactly once.

(a) What are the possible return values of getDifference if there are 2 threads?

(b) What are the possible return values of getDifference if there are n threads?

(c) Data races can be prevented by inserting synchronization primitives. One option is to declare

public synchronized int getDifference() {...}

public void incrementBoth() {...}

This will prevent two threads from executing method getDifference at the same time. Is
this enough to ensure that getDifference always returns 0? Explain briefly.

(d) Is the following declaration

public int getDifference() {...}

public synchronized int incrementBoth() {...}

sufficient to ensure that getDifference always returns 0? Explain briefly.

(e) What are the possible values of getDifference if the following declarations are used?

public synchronized int getDifference() {...}

public synchronized int incrementBoth() {...}

4. (10 points) Concurrent Access to Objects

Please do problem 14.6 from Mitchell, page 471.

5. (10 points) Java synchronized objects

Please do problem 14.7, parts a,b,and c from Mitchell, page 472.

4


