
CSCI 131 Spring 2019

Homework 1

Due Thursday, 1/31/2019

Before you submit your first solutions, go to https://submit.cs.pomona.edu/2019sp/cs131 and
enroll yourself in the class. When you are ready to turn in your homework, click on the assignment on
that page and follow the instructions to submit your work. If you have more than a single file, please
put them all in a folder and zip them up before turning them in. On a Mac you can zip up a folder by
holding down the control key while pressing the mouse down on the folder. Select Compress to zip up
your file. It should be similarly easy on other platforms.

Be sure to test your programs one last time before submitting. I’ve seen students mess up when
commenting code in a way that causes everything to break. Code that doesnt compile will get very
little credit. We will be using some automatic testing, and code that doesnt compile brings everything
to a halt. With a large class we will not have time to go in to manually tweak your code to make it
work.

Your homework solutions should be put in a text file with suffix “hs” (which means it is a Haskell
file). Please name your file hw1MyName.hs (where MyName is replaced by your name).

Your text file should compile without errors in ghci. This means that in particular, problem numbers
and any other non-program text should be given as Haskell comments. Single line comments start with
--. The comment extends from wherever in the line the -- occurs to the end of the line. You can also
put in block comments. They extend from {- to a closing -}. For example,

silly n = n * n - 3 -- this is a silly comment on a silly function

{- This is the start of a long

and important comment

telling about some code.

-}

IMPORTANT: When you write the functions requested below, please make sure that they have
the exact names and types specified in the question. If you make an error, your program will crash on
our test suite and you will get very little credit. To make extra sure it is written carefully test it on (at
least) the example code provided that illustrates what the function does.

Revision to come: I have not included instructions on how to turn in your programs. I will add
that before the due date and also post the instructions on Piazza.

1. (10 points) Haskell types

Explain the Haskell type for each of the following declarations:

(a) a(x,y) = x+2*y

(b) b(x,y) = x+y/2.0

(c) c(f) = \y → f y

(d) d(f,x) = f(f(x))

(e) e(x,y,b) = if b(y) then x else y

Because you can simply type these expressions into ghci (with a let in front if you type them
directly or as is if you load them from a file) to determine their type, be sure to write a short
explanation to show that you understand why the function has the type you give.

1



CSCI 131 Spring 2019

The answer to this question may be written as a block comment.

2. (50 points) Haskell Programming

For this problem, use the ghci interpreter on the computers in the computer lab (or on your own
computer). To run the program in the file “example.hs”, type

-> ghci

Prelude> :l example.hs

Prelude> :set +t -- gives more info when you type an expression

at the command line.

The Haskell compiler will process the program in the file and then wait for the user to type an
expression. For example, if “example.hs” contains

-- double an integer

double x = x + x;

-- return the length of a list

listLength [] = 0

listLength (l:ls) = 1 + listLength ls

You can test the program by typing the following:

*Main> double 10

20

it :: Integer

*Main> listLength (1:[2,3,4])

4

it :: Integer

Start early on this part so you can see the TA or me if you have problems understanding the
language. Looking at the examples in the on-line tutorials and text and in your notes will help a
great deal in understanding how to use Haskell. Use pattern matching where possible.

(a) Basic Functions

Define a function sumSquares that, given a nonnegative integer n, returns the sum of the
squares of the numbers from 1 to n:

- sumSquares 4;

30

- sumSquares 5;

55

Define a function listDup that takes a pair of an element, e, of any type, and a non-negative
number, n, and returns a list with n copies of e:

2



CSCI 131 Spring 2019

> listDup("moo", 4);

["moo","moo","moo","moo"]

it :: [[Char

> listDup(1, 2);

[1,1]

it :: [Integer]

> listDup(listDup("cow", 2), 2)

[["cow","cow"],["cow","cow"]]

it :: [[[Char]]]

Your function will have a type like (Eq t, Num t) => (a, t) -> [a]. What does this type
mean? Why is it the appropriate type for your function.

(b) Lists

Define a recursive function evens that returns the list of even numbers that occur in an input
list of numbers. For example, evens [1,2,3,4,8,5,2] should return [2,4,8,2]. Notice that
the elements are returned in the order encountered and duplicates are included. Evens has
type

evens :: Integral t => [t] -> [t]

Define a function incBy n lst with type given by incBy :: Num t => t -> [t] -> [t].
This function should take parameters n and lst and then increments all of the elements of
the list lst by n. Thus incBy 7 [1,4,2] should return [8,11,9]

For extra credit write incBy’ that behaves exactly as above, but is defined using the built-in
map function instead of using recursion.

(c) Zipping and Unzipping

The function zip to compute the pairwise interleaving of two lists of arbitrary length is
predefined, but I’d like you to write it from scratch anyway (calling it zip’). You should use
pattern matching to define this function. The function should have type:

zip’:: [t] -> [t1] -> [(t, t1)]

-> *Main> zip’ [1,3,5,7] ["a","b","c","de"]

[(1,"a"),(3,"b"),(5,"c"),(7,"de")]

it :: [(Integer, [Char])]

Note: If the lists don’t have the same length, you may decide how you would like the function
to behave. If you don’t specify any behavior at all you will get a warning from the compiler
that you have not taken care of all possible patterns— this is fine.

Write the inverse function, unzip’, which behaves as follows:

unzip’ :: [(s, t)] -> ([s], [t])

*Main> unzip’ [(1,"a"),(3,"b"),(5,"c"),(7,"de")]

([1,3,5,7],["a","b","c","de"])

it :: ([Integer], [[Char]])

Again, unzip is built-in, but you will write your own unzip’.

Write zip3’, to zip three lists.

3



CSCI 131 Spring 2019

zip3’ :: [t] -> [t1] -> [t2] -> [(t, t1, t2)]

*Main> zip3’ [1,3,5,7] ["a","b","c","de"] [1,2,3,4]

[(1,"a",1),(3,"b",2),(5,"c",3),(7,"de",4)]

it :: [(Integer, [Char], Integer)]

Once again, zip3 is built-in, but you will write your own zip3’.

Why can’t you write a function zip any that takes a list of any number of lists and zips
them into tuples? From the first part of this question it should be pretty clear that for
any fixed n, one can write a function zipn. The difficulty here is to write a single func-
tion that works for all n! I.e., can we write a single function zip any such that zip any

[list1,list2,...,listk] returns a list of k-tuples no matter what k is?

(d) find

Write a function find that takes a pair of an element and a list and returns the location of
the first occurrence of the element in the list (or -1 if it doesn’t occur).

find :: (Eq a, Eq a1, Num a1) => (a, [a]) -> a1

The prefix (Eq a, Eq a1, Num a1) => indicates that the type a of elements of the list must
support equality (after all you must check the first argument to see if it is equal to any of the
elements of the list). The return type must be some kind of a numeric type as it indicates
where in the list the element is found.

For example:

*Main> find(3, [1, 2, 3, 4, 5])

2

*Main> find("cow", ["cow", "dog"])

0

*Main> find("rabbit", ["cow", "dog"])

-1

First write a definition for find where the element is guaranteed to be in the list. Then,
modify your definition so that it returns -1 if the element is not in the list.

4


