
CS 105 Spring 2025

Lecture 18: CPU Scheduling

Review: Multiprocessing

The Illusion

• Abstraction: logical control
flow within a process

The Reality

• Context switching b/n
processes

• User cannot predict how
instructions will interleave

Real-world Examples
• Restaurants handling orders

• DMV handling customers

• Students handling assignments

• Hospitals handling patients

Possible Metrics
• Latency: how much time between when a job is

requested and when a job is completed

• Response time: how much time between when a job is
requested and when you start processing the job

• Throughput: the rate at which jobs are completed

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

First In, First Out (FIFO)
•

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

A

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

BA

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

BA C

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

BA C

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

BA C

First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

BA C

Exercise 1: First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

A

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

BA

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

BA C

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

BA C

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

BA C

Time
0 4020 60 80 100 120

Exercise 1: First In, First Out (FIFO)
•

BA C

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

Shortest Job First (SJF)
•

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

A

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

A C

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

A

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

BA

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Exercise 2: Shortest Job First (SJF)
•

BA C

Time
0 4020 60 80 100 120

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Shortest Time-to-Completion First (STCF)

•

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

A

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

BA

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

BA B

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

B CA B

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

B ACA B

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

B ACA B

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

B ACA B

Shortest Time-to-Completion First (STCF)

•

Time
0 4020 60 80 100 120

B ACA B

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Round Robin (RR)
•

Round Robin (RR)
•

Time
0 4020 60 80 100 120

Round Robin (RR)
•

Time
0 4020 60 80 100 120

ABCABCABCABCABC

Round Robin (RR)
•

Time
0 4020 60 80 100 120

ABCABCABCABCABC

Round Robin (RR)
•

Time
0 4020 60 80 100 120

ABCABCABCABCABC

Round Robin (RR)
•

Time
0 4020 60 80 100 120

ABCABCABCABCABC

Exercise 3: Round Robin (RR)
•

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A BCABCABCABCABC

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A BCABCA ABCABCABC

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A BCABCA ABCABCABC

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A BCABCA ABCABCABC

Time
0 4020 60 80 100 120

Exercise 3: Round Robin (RR)
•

A BCABCA ABCABCABC

Time
0 4020 60 80 100 120

Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU

Processes are not all the same
• CPU-bound processes use a lot of CPU

• e.g., compiling, scientific computing applications, mp3 encoding

• I/O-bound processes use CPU in short bursts
• e.g., browsing small webpages, indexing a file system

• Balanced processes are somewhere in between
• e.g., playing videos, moving windows around

Time
0 4020 60 80 100 120

A

Time
0 4020 60 80 100 120

A A A A A A A

Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching

Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching
• poor fairness for mixes of CPU-bound and I/O-bound

Multi-level Feedback Queues

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

Multi-level Feedback Queues

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

Q5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

Q5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

A

B

Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A

2) If Priority(A) = Priority(C), run A
and C Round Robin

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

CQ5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

A

B

Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A

2) If Priority(A) = Priority(C), run A
and C Round Robin

3) When a job enters the system, it is
place in the highest priority queue

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

CQ5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

A

B

D

Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A

2) If Priority(A) = Priority(C), run A
and C Round Robin

3) When a job enters the system, it is
place in the highest priority queue

4) Once a job uses up its time
allotment at current priority level, it
moves down one queue

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

CQ5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

A

B

D

Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A

2) If Priority(A) = Priority(C), run A
and C Round Robin

3) When a job enters the system, it is
place in the highest priority queue

4) Once a job uses up its time
allotment at current priority level, it
moves down one queue

5) After some time period, move all
jobs in the system to the highest
priority queue

• Goal: optimize latency while minimizing response time for
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different
priority level

CQ5

Q4

Q3

Q2

Q1

H
ig

he
r

P
rio

rit
y

A

B

D

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

A

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

A

10

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

A B

10

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

A BC

10

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0

A BC

10

A

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 20

A BC

10

A

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 20

A BC

10

A BC A

30

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 4020

A BC

10

A BC A BCA

30

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 4020

A BC

10

A BC A BCA

30

BC A

50

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 4020

A BC

10

A BC A BCA

30

BC A BC

50

Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10

in the highest priority queue, 20 in the next, 40 in the next, and
80 in the lowest priority queue. Priorities reset every 200ms.

• Example:
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing.
• Job B arrives at time 1. Job B loops five times; for each iteration of the

loop, B uses the CPU for 2ms and then does I/O for 8ms.
• Job C arrives at time 2. Job C is identical to Job B except for arrival time.

Time
0 4020 60

A BC

10

A BC A BCA

30

BC A BC A

50 70

Schedulers in Operating Systems
• CPU Scheduler selects next process to run from the

runnable pool

• Page Replacement Scheduler selects page to evict

• Disk Scheduler selects next read/write operation to
perform

• Network Scheduler selects next packet to send/process

	Lecture 18: CPU Scheduling
	Review: Multiprocessing
	Real-world Examples
	Possible Metrics
	Simplifying Assumptions (for now)
	First In, First Out (FIFO) (1)
	First In, First Out (FIFO) (2)
	First In, First Out (FIFO) (3)
	First In, First Out (FIFO) (4)
	First In, First Out (FIFO) (5)
	First In, First Out (FIFO) (6)
	First In, First Out (FIFO) (7)
	First In, First Out (FIFO) (8)
	Exercise 1: First In, First Out (FIFO) (1)
	Exercise 1: First In, First Out (FIFO) (2)
	Exercise 1: First In, First Out (FIFO) (3)
	Exercise 1: First In, First Out (FIFO) (4)
	Exercise 1: First In, First Out (FIFO) (5)
	Exercise 1: First In, First Out (FIFO) (6)
	Exercise 1: First In, First Out (FIFO) (7)
	Exercise 1: First In, First Out (FIFO) (8)
	Shortest Job First (SJF) (1)
	Shortest Job First (SJF) (2)
	Shortest Job First (SJF) (3)
	Shortest Job First (SJF) (4)
	Shortest Job First (SJF) (5)
	Shortest Job First (SJF) (6)
	Shortest Job First (SJF) (7)
	Shortest Job First (SJF) (8)
	Exercise 2: Shortest Job First (SJF) (1)
	Exercise 2: Shortest Job First (SJF) (2)
	Exercise 2: Shortest Job First (SJF) (3)
	Exercise 2: Shortest Job First (SJF) (4)
	Exercise 2: Shortest Job First (SJF) (5)
	Exercise 2: Shortest Job First (SJF) (6)
	Exercise 2: Shortest Job First (SJF) (7)
	Exercise 2: Shortest Job First (SJF) (8)
	Simplifying Assumptions (for now) (2) (1)
	Simplifying Assumptions (for now) (2) (2)
	Shortest Time-to-Completion First (STCF) (1)
	Shortest Time-to-Completion First (STCF) (2)
	Shortest Time-to-Completion First (STCF) (3)
	Shortest Time-to-Completion First (STCF) (4)
	Shortest Time-to-Completion First (STCF) (5)
	Shortest Time-to-Completion First (STCF) (6)
	Shortest Time-to-Completion First (STCF) (7)
	Shortest Time-to-Completion First (STCF) (8)
	Shortest Time-to-Completion First (STCF) (9)
	Shortest Time-to-Completion First (STCF) (10)
	Simplifying Assumptions (for now) (3) (1)
	Simplifying Assumptions (for now) (3) (2)
	Simplifying Assumptions (for now) (3) (3)
	Round Robin (RR) (1)
	Round Robin (RR) (2)
	Round Robin (RR) (3)
	Round Robin (RR) (4)
	Round Robin (RR) (5)
	Round Robin (RR) (6)
	Exercise 3: Round Robin (RR) (1)
	Exercise 3: Round Robin (RR) (2)
	Exercise 3: Round Robin (RR) (3)
	Exercise 3: Round Robin (RR) (4)
	Exercise 3: Round Robin (RR) (5)
	Exercise 3: Round Robin (RR) (6)
	Exercise 3: Round Robin (RR) (7)
	Exercise 3: Round Robin (RR) (8)
	Comparing Scheduling Algorithms
	Simplifying Assumptions (for now) (4) (1)
	Simplifying Assumptions (for now) (4) (2)
	Simplifying Assumptions (for now) (4) (3)
	Processes are not all the same
	Comparing Scheduling Algorithms (2) (1)
	Comparing Scheduling Algorithms (2) (2)
	Multi-level Feedback Queues (1)
	Multi-level Feedback Queues (2)
	Multi-level Feedback Queues (3)
	Multi-level Feedback Queues (4)
	Multi-level Feedback Queues (5)
	Multi-level Feedback Queues (6)
	Multi-level Feedback Queues (7)
	Example: Multi-level Feedback Queue (1)
	Example: Multi-level Feedback Queue (2)
	Example: Multi-level Feedback Queue (3)
	Example: Multi-level Feedback Queue (4)
	Example: Multi-level Feedback Queue (5)
	Example: Multi-level Feedback Queue (6)
	Example: Multi-level Feedback Queue (7)
	Example: Multi-level Feedback Queue (8)
	Example: Multi-level Feedback Queue (9)
	Example: Multi-level Feedback Queue (10)
	Example: Multi-level Feedback Queue (11)
	Example: Multi-level Feedback Queue (12)
	Schedulers in Operating Systems

