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Lecture 18: CPU Scheduling



Review: Multiprocessing

The Illusion

• Abstraction: logical control 
flow within a process 

The Reality

• Context switching b/n 
processes

• User cannot predict how 
instructions will interleave



Real-world Examples
• Restaurants handling orders

• DMV handling customers

• Students handling assignments

• Hospitals handling patients



Possible Metrics
• Latency: how much time between when a job is 

requested and when a job is completed

• Response time: how much time between when a job is 
requested and when you start processing the job

• Throughput: the rate at which jobs are completed



Simplifying Assumptions (for now)

1) Once you start a job, you complete that job before 
beginning the next job

2) The run-time of each job is known in advance

3) All jobs only use the CPU
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Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching
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1) Once you start a job, you complete that job before 
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2) The run-time of each job is known in advance

3) All jobs only use the CPU



Processes are not all the same
• CPU-bound processes use a lot of CPU

• e.g., compiling, scientific computing applications, mp3 encoding

• I/O-bound processes use CPU in short bursts
• e.g., browsing small webpages, indexing a file system

• Balanced processes are somewhere in between
• e.g., playing videos, moving windows around 
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Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching



Comparing Scheduling Algorithms
• FIFO

• works well if jobs are short
• otherwise bad latency and bad response time

• STCF
• good latency
• very uneven response time (bad fairness)
• assumes run-time of each job is known in advance

• RR
• good response time
• bad latency + overhead of context switching
• poor fairness for mixes of CPU-bound and I/O-bound



Multi-level Feedback Queues

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance
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Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A 

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different 
priority level
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Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A 

2) If Priority(A) = Priority(C), run A 
and C Round Robin

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different 
priority level
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Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A 

2) If Priority(A) = Priority(C), run A 
and C Round Robin

3) When a job enters the system, it is 
place in the highest priority queue

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different 
priority level
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Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A 

2) If Priority(A) = Priority(C), run A 
and C Round Robin

3) When a job enters the system, it is 
place in the highest priority queue

4) Once a job uses up its time 
allotment at current priority level, it 
moves down one queue

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different 
priority level
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Multi-level Feedback Queues

Scheduling rules:

1) If Priority(A) > Priority(B), run A 

2) If Priority(A) = Priority(C), run A 
and C Round Robin

3) When a job enters the system, it is 
place in the highest priority queue

4) Once a job uses up its time 
allotment at current priority level, it 
moves down one queue

5) After some time period, move all 
jobs in the system to the highest 
priority queue

• Goal: optimize latency while minimizing response time for 
interactive jobs without knowing run-time of jobs in advance

• General idea: maintain multiple queues, each with a different 
priority level
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Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10 

in the highest priority queue, 20 in the next, 40 in the next, and 
80 in the lowest priority queue. Priorities reset every 200ms. 

• Example: 
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing. 
• Job B arrives at time 1. Job B loops five times; for each iteration of the 

loop, B uses the CPU for 2ms and then does I/O for 8ms. 
• Job C arrives at time 2. Job C is identical to Job B except for arrival time. 
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Example: Multi-level Feedback Queue
• Multilevel feedback queue with four levels with a time slice of 10 

in the highest priority queue, 20 in the next, 40 in the next, and 
80 in the lowest priority queue. Priorities reset every 200ms. 

• Example: 
• Job A arrives first at time 0 and uses the CPU for 50ms before finishing. 
• Job B arrives at time 1. Job B loops five times; for each iteration of the 

loop, B uses the CPU for 2ms and then does I/O for 8ms. 
• Job C arrives at time 2. Job C is identical to Job B except for arrival time. 
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Schedulers in Operating Systems
• CPU Scheduler selects next process to run from the 

runnable pool

• Page Replacement Scheduler selects page to evict

• Disk Scheduler selects next read/write operation to 
perform

• Network Scheduler selects next packet to send/process
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