Lecture 15: OS and Processes

CS 105 Spring 2025

.
Intro to Operating Systems

* the operating system is a piece of software that manages
a computer's resources for its users and their applications
« Examples: OSX, Windows, Ubuntu, i10S, Android, Chrome OS

Intro to Operating Systems

Intro to Operating Systems

user interface

file I/O

device management
process control

multiprocessing
virtual memory
reliable networking
virtual machines

resource allocation
Isolation
communication
access control

Operating System Modes

Kernel Mode User Mode

Operating System Modes

Kernel Mode User Mode

* unrestricted access to * must ask kernel to access hw
hardware (system call)

Operating System Modes

Kernel Mode User Mode
* unrestricted access to * must ask kernel to access hw
hardware (system call)

* mediates all hardware
access (access control)

Operating System Modes

Kernel Mode

* unrestricted access to
hardware

* mediates all hardware
access (access control)

* can execute privileged
Instructions

User Mode

* must ask kernel to access hw
(system call)

* attempts to execute privileged
Instructions cause exceptions

Operating System Modes

Kernel Mode

* unrestricted access to
hardware

* mediates all hardware
access (access control)

* can execute privileged
Instructions

User Mode

* must ask kernel to access hw
(system call)

* attempts to execute privileged
Instructions cause exceptions

* Operating system mode is set in hardware, can't be changed

by user-level code

Processes

* A program is a file containing code + data that describes
a computation

* A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

Memory

Stack
Heap
Data
Code

Linux Process Hierarchy

‘‘‘‘‘
. .
. s
. .
* *

Linux Process Hierarchy

‘‘‘‘‘
. .
. s
. .
* *

Linux Process Hierarchy

‘‘‘‘‘
. .
. s
. .
* *

Linux Process Hierarchy

‘‘‘‘‘
. .
. .
. .
* *

Linux Process Hierarchy

e
.
-
.
3

'
wne®
ot
.
*

Login shell
Child

Linux Process Hierarchy

e
.
-
.
3

'
wne®
ot
.
*

Login shell

-
.....
.....
....

Login shell
Child

Grandchild (Grandohild

Linux Process Hierarchy

e
.
-
.
3

s
wnn®
ot
.
*

Login shell
Child

each process has a unique
process id (pid)

Login shell

‘e
.
G
‘a
»

Grandchild (Grandohild

Linux Process Hierarchy

e
.
-
.
3

s
wnn®
ot
.
*

Login shell

.
G
‘a
a,

Login shell
Child

each process has a unique
process id (pid)
@ @ Note: you can view the
hierarchy using the Linux
pstree command

Creating Processes

* Parent process creates a new running child process by calling
fork

int fork(void)
* Returns O to the child process, child’s PID to parent process
* Child is almost identical to parent:
* Child get an identical (but separate) copy of the parent’s virtual address space.

* Child gets identical copies of the parent’s open file descriptors
* Child has a different PID than the parent

Creating Processes

* Parent process creates a new running child process by calling
fork

int fork(void)
* Returns O to the child process, child’s PID to parent process

* Child is almost identical to parent:
* Child get an identical (but separate) copy of the parent’s virtual address space.
* Child gets identical copies of the parent’s open file descriptors
* Child has a different PID than the parent

* fork is interesting (and often confusing) because
it is called once but returns twice

fork Example

int main(){

pid_t id;
int x =1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

fork Example

int main(){ B Call once, return twice

pid_t id;
int x =1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

fork Example

intmaliin ® Call once, return twice
. []
pid t id; Duplicate but separate
int x = 1; address space
|
id = fork(); X has a value. of 1 when
if (id == 0) { /* Child ¥/ fork returns in parent and
printf(“child : x=%d\n", ++Xx); child
return O;

" Subsequent changes to x
are independent

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

x=1

main fork

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

X has a value of 1 when

fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

A\ 4

Xx=1 ‘
t

main fork

v

Child Process (pid: 52)

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;
}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

X has a value of 1 when

fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

1d=0

- x=1 ‘ id=52

main fork

A\ 4

v

Child Process (pid: 52)

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

1d=0, x=2

- x=1 ‘ id=52

main fork

v

Child Process (pid: 52)

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

B Call once, return twice

B Duplicate but separate
address space

X has a value of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

1d=0, x=2 Ch‘ild: X=2

printf
- x=1 ‘ id=52 R

main fork

Child Process (pid: 52)

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

1d=0, x=2 Ch‘ild: X=2

printf
- x=1 ‘ 1d=52 x=0 R

main fork

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

Child Process (pid: 52)

Original Process (pid:47)

fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

1d=0, x=2 Ch‘ild: X=2

‘ printf
= xX=1 id=52 x=0 pgrent:

main fork printf

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

Child Process (pid: 52)

Original Process (pid:47)

execve : Loading and Running Programs

* int execve(char *filename, char *argv[], char *envp[])

execve : Loading and Running Programs

* int execve(char *filename, char *argv[], char *envp[])

* Loads and runs in the current process:

* Executable file filename

* Can be object file or script file beginning with #! interpreter
(e.g., #!/bin/bash)

° ...with argument list argv
* By convention argv[0]==filename

° ...and environment variable list envp
* “name=value” strings (e.g., USER=droh)
* getenv, putenv, printenv

execve : Loading and Running Programs

* int execve(char *filename, char *argv[], char
*envp[])
* Loads and runs in the current process:

* Executable file filename

* Can be object file or script file beginning with #! interpreter
(e.g.,#!/bin/bash)

* ...with argument list argv
°* By convention argv[0]==filename
* ...and environment variable list envp
* “name=value” strings (e.g., USER=droh)
° getenv, putenv, printenv
* Overwrites code, data, and stack
* Retains PID, open files and signal context

execve : Loading and Running Programs

* int execve(char *filename, char *argv[], char
*envp[])
* Loads and runs in the current process:

* Executable file filename

* Can be object file or script file beginning with #! interpreter
(e.g.,#!/bin/bash)

* ...with argument list argv
°* By convention argv[0]==filename
* ...and environment variable list envp
* “name=value” strings (e.g., USER=droh)
° getenv, putenv, printenv
* Overwrites code, data, and stack
* Retains PID, open files and signal context

* Called once and never returns
° ...except if there is an error

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}
printf(“2\n");
return 0;

} exec.cC

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}
printf(“2\n");
return 0;
} exec.cC

0]
*e——e Parent (pid = 47)
main printf

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}
printf(“2\n");
return 0;
} exec.cC

0]
.- —0— —@ Parent (pid = 47)
main printf fork

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}

printf(“2\n");
return 0;
} exec.cC

1d=0 Child (pid = 49)
0 ‘ id=49 .
o —0— — Parent (pid = 47)

main printf fork

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}

printf(“2\n");
return 0;
} exec.cC

1d=0

r Child (pid = 49)
0 o 1 2
. 9 id=49 o e Parent (pid = 47)

main printf fork printf printf

execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}

printf(“2\n");
return 0;
} exec.cC

1d=0 hello . :
- e Child (pid = 49)
Jt execve printf
0 o 1 2
. 9 id=49 o e Parent (pid = 47)

main printf fork printf printf

Processes: 291 total, 2 running, 289 sleeping, 1761 threads

SharedLibs:

184M resident,
MemRegions: 230644 total, 209@M resident, B5M private, 810M shared.
PhysMem: 816@0M used (2275M wired), 31M unused.

Multiprocessing

/Users/eleanor — top

52M data,

64M linkedit.

« Computer runs many processes simultaneously

* Running program “top” on Mac
* ldentified by Process ID (PID)

+

13:28:14
Load Avg: 2.28, 3.50, 3.32 CPU usage: 16.28% user, 16.28% sys, 67.43% idle

VM: 1370G vsize, 1090M framework vsize, 39@8511252(@) swapins, 393866102(@) swapo
Networks: packets:

Disks:

PID

96079
96078
92016
89747
86347
86160
86159
86156
86155
82979
81953
79035

65170326/2297G read,

COMMAND

bash

login
texstudio
com.apple.ap
hdiejectd
com.apple.We
com.apple.We
com.apple.We
com.apple.We
syspolicyd
accountsd
rtcreporting

O

D000 ®®T
c

Lo R~ SR R R S R R S R R

117124661/108G in,

TIME

00:01.05
00:00.10
42:37.65
06:56.73
00:01.63
01:42.54
01:44.81
01:43.39
01:34.47
00:10.78
15:19.49
02:04.90

~l
NI—‘NNNNNI—‘UJNI—‘@E
f =]

AN WOdUAdNUO RN

138330789/100G out.
55833187/2115G written.

#PORTS MEM

19 8192B
30 8192B
315- 28M-
318 15M

32 252K
207 1804K
121 796K
207 170K
121 916K
52 816K
345 7252K
56 808K

PURG

@B
@B
@B
0B
0B
0B
@B
@B
0B
0B

0B-

@B

CMPRS
1024K
1916K
193M
14M
1124K
6720K
6800K
7260K
7436K
5992K
201M
3668K

PGRP

96079
96078
92016
89747
86347
86160
86159
86156
86155
82979
81953
79035

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap

Data Data coe Data
Code Code Code

* Process provides each program with two key abstractions:

* Logical control flow
* Each program seems to have exclusive use of the CPU

* Provided by kernel mechanism called context switching

* Private address space
* Each program seems to have exclusive use of main memory.

* Provided by kernel mechanism called virtual memory

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
Saved Saved Saved
registers registers registers

* Single processor executes multiple processes concurrently
* Process executions interleaved (multitasking)
* Register values for nonexecuting processes saved in memory
* Address spaces managed by virtual memory system

Context Switching

* Processes are managed by a shared chunk of memory-
resident kernel code

* Important: the kernel code is not a separate process, but rather
code and data structures that the OS uses to manage all

processes
* Control flow passes from one process to another via a
context switehiessa 1 ProcessB
|
: user code
Time kernel code } context switch

user code

kernel code } context switch

I

I

: user code
I

.
Process Control Block (PCB)

* To implement a context switch, OS maintains a PCB for
each process containing:

* process table, which contains information about the process (id,
user, privilege level, arguments, status)

 location of executable on disk
file table

register values (general-purpose registers, float registers, pc,
eflags...)

memory state
scheduling information

... and more!

Multiprocessing: The (Traditional) Reality

Saved

reqisters

Memory

Stack

Heap

Data

Code

Saved

reqisters

Stack

Heap

Data

Code

Saved
registers

5

1. Save current registers to memory (in PCB)

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
Saved Saved Saved
registers registers registers

5

1. Save current registers to memory (in PCB)
2. Schedule next process for execution

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
Saved Saved Saved
registers reqil'_s,lters registers

5

1. Save current registers to memory (in PCB)
2. Schedule next process for execution
3. Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data A Data
Code Code Code
Saved Saved Saved
registers registers registers

* Multicore processors
* Multiple CPUs on single chip
* Share main memory (and some of the caches)

* Each can execute a separate process
* Scheduling of processors onto cores done by kernel

.
Exercise: Context Switching

A hardware designer argues that there are now enough on-
chip transistors to build a CPU with 1024 integer registers
and 512 floating point registers. As a result, the compiler
should almost never need to store anything on the stack.

As a new operating systems expert, would you recommend
building this new design.

Process Life Cycle

Runnable

Process Life Cycle

Runnable L. Running
scheduled

Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled

.
EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

|_current l

.
EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

Event — I_currentl

.
EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

Event — I_currentl Exception

v

.
EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

Event — I_currentl Exception

'| Exception processing
by exception handler

.
EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

Event — I_currentl Exception

'| Exception processing
by exception handler

* Return to |_current

* Return to |_next

* Abort

EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code

Event —— | _current
|_next

«

Kernel code

Exception

'| Exception processing
by exception handler

* Return to |_current

* Return to |_next

* Abort

Exception Tables

Exception * Each type of event has a
numbers unigue exception number k
Code for
exception handler 0 * k = index into exception table
Exception T (a.k.a. interrupt vector)
vTable exception handler 1
0 "4 / i .
1 pog Code for * Handler k is called each time
2 o exception handler 2 exception k occurs
n-1 o
Code for

exception handler n-1

R —————
Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:

.
Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
» Traps
* Intentional

« Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

.
Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
* Traps
* Intentional

* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
* Unintentional but possibly recoverable

* Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts

.
Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
* Traps
* Intentional

* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
* Unintentional but possibly recoverable

* Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts

* Aborts
* Unintentional and unrecoverable
* Examples: illegal instruction, divide-by-zero, parity error, machine check
* Aborts current program

.
Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

.
Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

Examples:

* Timer interrupt
* Every few ms, an external timer chip triggers an interrupt
* Used by the kernel to take back control from user programs

.
Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

Examples:

* Timer interrupt

* Every few ms, an external timer chip triggers an interrupt

* Used by the kernel to take back control from user programs
* |/O interrupt from external device

* Hitting Ctrl-C at the keyboard

* Arrival of a packet from a network

* Arrival of data from a disk

fork Example

int main(){

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */
printf("child : x=%d\n", ++Xx);
return O;

}

[* Parent */
printf("parent: x=%d\n", --x);
return O;

B Call once, return twice

B Duplicate but separate
address space

® X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to X
are independent

B Shared open files

" stdout isthe samein
both parent and child

fork Example

NG e B Call once, return twice
. [)
bid t pid: Duplicate but separate
int x = 1; address space
[|
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
) SR L " Subsequent changes to X
are independent
[* Parent */ [.
printf("parent: x=%d\n", --x); Shared open files
return 0; " stdout is the same in
} both parent and child
X2 ,§ Child
printf
Xx=1 Xx=0 0
o —@ Parent

main fork printf

fork Example

NG e B Call once, return twice
. [)
bid t pid: Duplicate but separate
int x = 1; address space
[|
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
return O;

" Subsequent changes to X

y are independent
/* Parent */ B .
printf("parent: x=%d\n", --x); Shared open files
return 0: " stdout isthe samein
} both parent and child
X=2 2 Child B Concurrent execution
printf

® Can't predict execution
x=1 X=0 0

P e Parent order of parent and child
main fork printf

fork Example

NG e B Call once, return twice
.]
bid t pid: Duplicate but separate
int x = 1; address space
|
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
) SR L " Subsequent changes to X
are independent
[* Parent */ [.
printf("parent: x=%d\n", --x); Shared open files
return 0; " stdout is the same in
} both parent and child
X=2 2 Child ® Concurrent execution
printf

® Can't predict execution
x=1 X=0 0

P e Parent order of parent and child
main fork printf

Exercise: What are all the possible outputs of this program?

.
Modeling fork with Process Graphs

* A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement
* a-> b means a happens before b

Edges can be labeled with current value of variables

printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

.
Modeling fork with Process Graphs

* A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement
* a-> b means a happens before b

Edges can be labeled with current value of variables

printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

* Any topological sort of the graph corresponds to a feasible
total ordering.
* Total ordering of vertices where all edges point from left to right

.
Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

* Relabeled graph:

J e

b

e
o) J

.
Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

Feasible total ordering:

* Relabeled graph:

h@ VY N\
a b e C

b

Y J
o) J

.
Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

Feasible total ordering:

* Relabeled graph:

e

Y J
\ 4
o) J 1
O
O
D
g)

fork Example: Two consecutive forks

void fork1()

{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

fork Example: Two consecutive forks

void fork1()
{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");
}
Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye

fork Example: Two consecutive forks

Bye
void fork1() printf
{ L1 R Bye

printf("LO\n"); pr;ﬁtf fork printf
fork(ﬁ Bye
?JII'IQ?)C(g pri.ntf
printf("Bye\n"); Lo e A'|_‘17 R EXe
} printf fork printf fork printf

Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye

Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs
are feasible

Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs
are feasible

void fork2(){
printf("LO\n");
If (fork() '=0) {
printf("L1\n");
If (fork() '=0) {
printf("L2\n");

}
}
printf("Bye\n");
}

LO LO
L1 Bye
Bye L1
Bye Bye
L2 Bye

Bye L2

Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs

are feasible
void fork2(){ void fork3(){
printf("LO\n"); printf("LO\n");
If (fork() '=0) { If (fork() == 0) {
printf("L1\n"); printf("L1\n");
If (fork() '=0) { If (fork() == 0) {
printf("L2\n"); printf("L2\n");
} }
} }
printf("Bye\n"); printf("Bye\n");
} }
LO LO LO LO
L1 Bye Bye Bye
Bye L1 L1 L1
Bye Bye L2 Bye
L2 Bye Bye Bye

Bye L2 Bye L2

Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled

Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

Stopped

Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

wait, 1/O operation

Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

process or

/0 completion wait, 1/0 operation

.
Reaping Children

* Reaping
* Performed by parent on terminated child (using wait or waitpid)
« Parent is given exit status information
- Kernel then deletes zombie child process

int wait(int* child_status)
« Suspends current process until any one of its children terminates
* Return value is the pid of the child process that terminated

* If child_status != NULL, then the integer it points to will be setto a
value that indicates reason the child terminated and the exit status

.
Reaping Children

* Reaping
* Performed by parent on terminated child (using wait or waitpid)
* Parent is given exit status information
* Kernel then deletes zombie child process

int wait(int child_status)
* Suspends current process until any one of its children terminates
* Return value is the pid of the child process that terminated

* If child_status != NULL, then the integer it points to will be set to a
value that indicates reason the child terminated and the exit status

int waitpid(pid_t pid, int child_status, int
opt)

* Suspends current process child with pid terminates

walt Example

void fork6() {

int child_status;

HC exit

if (fork() == 0) { printf
printf("HC: hello from child\n");

exit(0);

} else { ;72
printf("HP: hello from parent\n"); de A"'E A'# Q‘
wait(&child _status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

}
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC

Reaping Children

* What if parent doesn’t reap?
* If any parent terminates without reaping a child, then the orphaned
child will be reaped by 1nit process (pid == 1)
* S0, only need explicit reaping in long-running processes
* e.g., shells and servers

Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled

process or

/0 completion wait, 1/0 operation

Process Life Cycle

Terminated

interrupt, yield

‘/-\

Runnable

return from main,
exit, terminated

Running
scheduled

process or

/0 completion wait, 1/0 operation

Terminating Processes

* Process becomes terminated for one of three reasons:
* Returning from the mailn routine
- Calling the exit function
* Recelving a signal whose default action is to terminate

Terminating Processes

* Process becomes terminated for one of three reasons:
* Returning from the mailn routine
- Calling the exit function
* Recelving a signal whose default action is to terminate

*volid exit (int status)
* Terminates with an exit status of status
* Convention: normal return status is O, nonzero on error

* Another way to explicitly set the exit status is to return an integer value
from the main routine

* exit is called once but never returns.

	Lecture 15: OS and Processes
	Intro to Operating Systems
	Slide: 3 (1)
	Slide: 3 (2)
	Operating System Modes (1)
	Operating System Modes (2)
	Operating System Modes (3)
	Operating System Modes (4)
	Operating System Modes (5)
	Processes
	Linux Process Hierarchy (1)
	Linux Process Hierarchy (2)
	Linux Process Hierarchy (3)
	Linux Process Hierarchy (4)
	Linux Process Hierarchy (5)
	Linux Process Hierarchy (6)
	Linux Process Hierarchy (7)
	Linux Process Hierarchy (8)
	Creating Processes (1)
	Creating Processes (2)
	fork Example (1)
	fork Example (2)
	fork Example (3)
	fork Example (4)
	fork Example (5)
	fork Example (6)
	fork Example (7)
	fork Example (8)
	fork Example (9)
	fork Example (10)
	fork Example (11)
	execve: Loading and Running Programs (1)
	execve: Loading and Running Programs (2)
	execve: Loading and Running Programs (3)
	execve: Loading and Running Programs (4)
	execve Example (1)
	execve Example (2)
	execve Example (3)
	execve Example (4)
	execve Example (5)
	execve Example (6)
	Multiprocessing
	Multiprocessing: The Illusion
	Multiprocessing: The (Traditional) Reality
	Context Switching
	Process Control Block (PCB)
	Multiprocessing: The (Traditional) Reality (2)
	Multiprocessing: The (Traditional) Reality (3)
	Multiprocessing: The (Traditional) Reality (4)
	Multiprocessing: The (Modern) Reality
	Exercise: Context Switching
	Process Life Cycle (1)
	Process Life Cycle (2)
	Process Life Cycle (3)
	Exceptions (1)
	Exceptions (2)
	Exceptions (3)
	Exceptions (4)
	Exceptions (5)
	Exceptions (6)
	Exception Tables
	Synchronous Exceptions (1)
	Synchronous Exceptions (2)
	Synchronous Exceptions (3)
	Synchronous Exceptions (4)
	Interrupts (Asynchronous Exceptions) (1)
	Interrupts (Asynchronous Exceptions) (2)
	Interrupts (Asynchronous Exceptions) (3)
	fork Example (2) (1)
	fork Example (2) (2)
	fork Example (2) (3)
	fork Example (2) (4)
	Modeling fork with Process Graphs (1)
	Modeling fork with Process Graphs (2)
	Interpreting Process Graphs (1)
	Interpreting Process Graphs (2)
	Interpreting Process Graphs (3)
	fork Example: Two consecutive forks (1)
	fork Example: Two consecutive forks (2)
	fork Example: Two consecutive forks (3)
	Exercise: Forks and Feasible Schedules (1)
	Exercise: Forks and Feasible Schedules (2)
	Exercise: Forks and Feasible Schedules (3)
	Process Life Cycle (2) (1)
	Process Life Cycle (2) (2)
	Process Life Cycle (2) (3)
	Process Life Cycle (2) (4)
	Reaping Children (1)
	Reaping Children (2)
	wait Example
	Reaping Children
	Process Life Cycle (3) (1)
	Process Life Cycle (3) (2)
	Terminating Processes (1)
	Terminating Processes (2)

