Lecture 15: OS and Processes

CS 105 Spring 2025



.
Intro to Operating Systems

* the operating system is a piece of software that manages
a computer's resources for its users and their applications
« Examples: OSX, Windows, Ubuntu, i10S, Android, Chrome OS
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Intro to Operating Systems

user interface

file I/O

device management
process control

multiprocessing
virtual memory
reliable networking
virtual machines

resource allocation
Isolation
communication
access control
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Operating System Modes

Kernel Mode

* unrestricted access to
hardware

* mediates all hardware
access (access control)

* can execute privileged
Instructions

User Mode

* must ask kernel to access hw
(system call)

* attempts to execute privileged
Instructions cause exceptions

* Operating system mode is set in hardware, can't be changed

by user-level code



Processes

* A program is a file containing code + data that describes
a computation

* A process is an instance of a running program.
* One of the most profound ideas in computer science
* Not the same as “program” or “processor”

Memory

Stack
Heap
Data
Code




Linux Process Hierarchy

-------------------
‘‘‘‘‘
. .
. s
. .
* *



Linux Process Hierarchy

-------------------
‘‘‘‘‘
. .
. s
. .
* *



Linux Process Hierarchy

-------------------
‘‘‘‘‘
. .
. s
. .
* *



Linux Process Hierarchy

-------------------
‘‘‘‘‘
. .
. .
. .
* *



Linux Process Hierarchy

---------------
e
.
-
.
3

'
wne®
ot
.
*

Login shell
Child




Linux Process Hierarchy

---------------
e
.
-
.
3

'
wne®
ot
.
*

Login shell

-
.....
.....
....

Login shell
Child

Grandchild  (Grandohild



Linux Process Hierarchy

---------------
e
.
-
.
3

s
wnn®
ot
.
*

Login shell
Child

each process has a unique
process id (pid)

Login shell

‘e
.
G
‘a
»
-------
--------------

Grandchild  (Grandohild



Linux Process Hierarchy

---------------
e
.
-
.
3

s
wnn®
ot
.
*

Login shell

.
G
‘a
a,

Login shell
Child

each process has a unique
process id (pid)
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hierarchy using the Linux
pstree command




Creating Processes

* Parent process creates a new running child process by calling
fork

int fork(void)
* Returns O to the child process, child’s PID to parent process
* Child is almost identical to parent:
* Child get an identical (but separate) copy of the parent’s virtual address space.

* Child gets identical copies of the parent’s open file descriptors
* Child has a different PID than the parent



Creating Processes

* Parent process creates a new running child process by calling
fork

int fork(void)
* Returns O to the child process, child’s PID to parent process

* Child is almost identical to parent:
* Child get an identical (but separate) copy of the parent’s virtual address space.
* Child gets identical copies of the parent’s open file descriptors
* Child has a different PID than the parent

* fork is interesting (and often confusing) because
it is called once but returns twice



fork Example

int main(){

pid_t id;
int x =1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;
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int main(){ B Call once, return twice

pid_t id;
int x =1;

id = fork();
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printf(“child : x=%d\n", ++Xx);
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/* Parent */
printf("parent: x=%d\n", --x);
return 0;
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int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
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int main(){
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int main(){
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fork Example

int main(){

pid_t id;
intx = 1;

id = fork();
if (id == 0) { /* Child */
printf(“child : x=%d\n", ++Xx);
return O;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

1d=0, x=2 Ch‘ild: X=2

‘ printf
= xX=1 id=52 x=0 pgrent:

main fork printf

B Call once, return twice

B Duplicate but separate
address space

" X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdout isthe samein
both parent and child

Child Process (pid: 52)

Original Process (pid:47)
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execve : Loading and Running Programs

* int execve(char *filename, char *argv[], char
*envp[])
* Loads and runs in the current process:

* Executable file filename

* Can be object file or script file beginning with #! interpreter
(e.g.,#!/bin/bash)

* ...with argument list argv
°* By convention argv[0]==filename
* ...and environment variable list envp
* “name=value” strings (e.g., USER=droh)
° getenv, putenv, printenv
* Overwrites code, data, and stack
* Retains PID, open files and signal context

* Called once and never returns
° ...except if there is an error



execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}
printf(“2\n");
return 0;

} exec.cC
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execve Example

int main(int argc, char** argv){ int main(int argc, char** argv){
printf("Hello!\n");

printf("0\n");
pid t id = fork(); return 0;
} hello.c

if(id == 0){ // if child
execve("hello", NULL, NULL);

} else { // if parent
printf("1\n");

}

printf(“2\n");
return 0;
} exec.cC

1d=0 hello . :
- e Child (pid = 49)
Jt execve printf
0 o 1 2
. 9 id=49 o e Parent (pid = 47)

main printf fork printf printf



Processes: 291 total, 2 running, 289 sleeping, 1761 threads

SharedLibs:

184M resident,
MemRegions: 230644 total, 209@M resident, B5M private, 810M shared.
PhysMem: 816@0M used (2275M wired), 31M unused.

Multiprocessing

/Users/eleanor — top

52M data,

64M linkedit.

« Computer runs many processes simultaneously

* Running program “top” on Mac
* ldentified by Process ID (PID)

+

13:28:14
Load Avg: 2.28, 3.50, 3.32 CPU usage: 16.28% user, 16.28% sys, 67.43% idle

VM: 1370G vsize, 1090M framework vsize, 39@8511252(@) swapins, 393866102(@) swapo
Networks: packets:

Disks:

PID

96079
96078
92016
89747
86347
86160
86159
86156
86155
82979
81953
79035

65170326/2297G read,

COMMAND

bash

login
texstudio
com.apple.ap
hdiejectd
com.apple.We
com.apple.We
com.apple.We
com.apple.We
syspolicyd
accountsd
rtcreporting

O

D000 ®®T
c

Lo R~ SR R R S R R S R R

117124661/108G in,

TIME

00:01.05
00:00.10
42:37.65
06:56.73
00:01.63
01:42.54
01:44.81
01:43.39
01:34.47
00:10.78
15:19.49
02:04.90

~l
NI—‘NNNNNI—‘UJNI—‘@E
f =]

AN WOdUAdNUO RN

138330789/100G out.
55833187/2115G written.

#PORTS MEM

19 8192B
30 8192B
315-  28M-
318 15M

32 252K
207 1804K
121 796K
207 170K
121 916K
52 816K
345 7252K
56 808K

PURG

@B
@B
@B
0B
0B
0B
@B
@B
0B
0B

0B-

@B

CMPRS
1024K
1916K
193M
14M
1124K
6720K
6800K
7260K
7436K
5992K
201M
3668K

PGRP

96079
96078
92016
89747
86347
86160
86159
86156
86155
82979
81953
79035



Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap

Data Data coe Data
Code Code Code

* Process provides each program with two key abstractions:

* Logical control flow
* Each program seems to have exclusive use of the CPU

* Provided by kernel mechanism called context switching

* Private address space
* Each program seems to have exclusive use of main memory.

* Provided by kernel mechanism called virtual memory




Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
Saved Saved Saved
registers registers registers

* Single processor executes multiple processes concurrently
* Process executions interleaved (multitasking)
* Register values for nonexecuting processes saved in memory
* Address spaces managed by virtual memory system



Context Switching

* Processes are managed by a shared chunk of memory-
resident kernel code

* Important: the kernel code is not a separate process, but rather
code and data structures that the OS uses to manage all

processes
* Control flow passes from one process to another via a
context switehiessa 1 ProcessB
|
: user code
Time kernel code } context switch

user code

kernel code } context switch

I

I

: user code
I



.
Process Control Block (PCB)

* To implement a context switch, OS maintains a PCB for
each process containing:

* process table, which contains information about the process (id,
user, privilege level, arguments, status)

 location of executable on disk
file table

register values (general-purpose registers, float registers, pc,
eflags...)

memory state
scheduling information

... and more!



Multiprocessing: The (Traditional) Reality

Saved

reqisters

Memory

Stack

Heap

Data

Code

Saved

reqisters

Stack

Heap

Data

Code

Saved
registers

5

1. Save current registers to memory (in PCB)
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Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
Saved Saved Saved
registers reqil'_s,lters registers

5

1. Save current registers to memory (in PCB)
2. Schedule next process for execution
3. Load saved registers and switch address space



Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data A Data
Code Code Code
Saved Saved Saved
registers registers registers

* Multicore processors
* Multiple CPUs on single chip
* Share main memory (and some of the caches)

* Each can execute a separate process
* Scheduling of processors onto cores done by kernel




.
Exercise: Context Switching

A hardware designer argues that there are now enough on-
chip transistors to build a CPU with 1024 integer registers
and 512 floating point registers. As a result, the compiler
should almost never need to store anything on the stack.

As a new operating systems expert, would you recommend
building this new design.



Process Life Cycle

Runnable




Process Life Cycle

Runnable L. Running
scheduled




Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled
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EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

|_current l
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EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code Kernel code

Event — I_currentl Exception

'| Exception processing
by exception handler

* Return to |_current

* Return to |_next

* Abort



EXxceptions

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

User code

Event —— | _current
|_next

«

Kernel code

Exception

'| Exception processing
by exception handler

* Return to |_current

* Return to |_next

* Abort



Exception Tables

Exception * Each type of event has a
numbers unigue exception number k
Code for
exception handler 0 * k = index into exception table
Exception T (a.k.a. interrupt vector)
vTable exception handler 1
0 "4 / i .
1 pog Code for * Handler k is called each time
2 o exception handler 2 exception k occurs
n-1 o
Code for

exception handler n-1
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Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
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Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
» Traps
* Intentional

« Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction
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Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
* Traps
* Intentional

* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
* Unintentional but possibly recoverable

* Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts



.
Synchronous Exceptions

Caused by events that occur as a result of executing an
Instruction:
* Traps
* Intentional

* Examples: system calls, breakpoint traps, special instructions
* Returns control to “next” instruction

* Faults
* Unintentional but possibly recoverable

* Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions

* Either re-executes faulting (“current”) instruction or aborts

* Aborts
* Unintentional and unrecoverable
* Examples: illegal instruction, divide-by-zero, parity error, machine check
* Aborts current program



.
Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction
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Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

Examples:

* Timer interrupt
* Every few ms, an external timer chip triggers an interrupt
* Used by the kernel to take back control from user programs
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Interrupts (Asynchronous Exceptions)

Caused by events external to the process
* Indicated by setting the processor’s interrupt pin
« Handler returns to “next” instruction

Examples:

* Timer interrupt

* Every few ms, an external timer chip triggers an interrupt

* Used by the kernel to take back control from user programs
* |/O interrupt from external device

* Hitting Ctrl-C at the keyboard

* Arrival of a packet from a network

* Arrival of data from a disk



fork Example

int main(){

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */
printf("child : x=%d\n", ++Xx);
return O;

}

[* Parent */
printf("parent: x=%d\n", --x);
return O;

B Call once, return twice

B Duplicate but separate
address space

® X has avalue of 1 when
fork returns in parent and
child

" Subsequent changes to X
are independent

B Shared open files

" stdout isthe samein
both parent and child



fork Example

NG e B Call once, return twice
. [ )
bid t pid: Duplicate but separate
int x = 1; address space
[ |
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
) SR L " Subsequent changes to X
are independent
[* Parent */ [ .
printf("parent: x=%d\n", --x); Shared open files
return 0; " stdout is the same in
} both parent and child
X2 ,§ Child
printf
Xx=1 Xx=0 0
o —@ Parent

main fork printf



fork Example

NG e B Call once, return twice
. [ )
bid t pid: Duplicate but separate
int x = 1; address space
[ |
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
return O;

" Subsequent changes to X

y are independent
/* Parent */ B .
printf("parent: x=%d\n", --x); Shared open files
return 0: " stdout isthe samein
} both parent and child
X=2 2 Child B Concurrent execution
printf

® Can't predict execution
x=1 X=0 0

P e Parent order of parent and child
main fork printf




fork Example

NG e B Call once, return twice
. ]
bid t pid: Duplicate but separate
int x = 1; address space
|
oidi=FCIRa X has a valug of 1 when
if (pid == 0) { /* Child */ fork returns in parent and
printf("child : x=%d\n", ++Xx); child
) SR L " Subsequent changes to X
are independent
[* Parent */ [ .
printf("parent: x=%d\n", --x); Shared open files
return 0; " stdout is the same in
} both parent and child
X=2 2 Child ® Concurrent execution
printf

® Can't predict execution
x=1 X=0 0

P e Parent order of parent and child
main fork printf

Exercise: What are all the possible outputs of this program?



.
Modeling fork with Process Graphs

* A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement
* a-> b means a happens before b

Edges can be labeled with current value of variables

printf vertices can be labeled with output

Each graph begins with a vertex with no inedges



.
Modeling fork with Process Graphs

* A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
* Each vertex is the execution of a statement
* a-> b means a happens before b

Edges can be labeled with current value of variables

printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

* Any topological sort of the graph corresponds to a feasible
total ordering.
* Total ordering of vertices where all edges point from left to right
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Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

* Relabeled graph:

J e
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Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

Feasible total ordering:

* Relabeled graph:

h@ VY N\
a b e C

b

Y J
o) J
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Interpreting Process Graphs

* Original graph:

X=2 2

_ Child
printf
Xx=1 X=0 0
o —@ Parent

main fork printf

Feasible total ordering:

* Relabeled graph:

e

Y J
\ 4
o) J 1
O
O
D
g)



fork Example: Two consecutive forks

void fork1()

{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");




fork Example: Two consecutive forks

void fork1()
{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");
}
Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye



fork Example: Two consecutive forks

Bye
void fork1() printf
{ L1 R Bye

printf("LO\n"); pr;ﬁtf fork printf
fork(ﬁ Bye
?JII'IQ?)C( g pri.ntf
printf("Bye\n"); Lo e A'|_‘17 R EXe
} printf fork printf fork printf

Which of these outputs are feasible? LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye



Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs
are feasible




Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs
are feasible

void fork2(){
printf("LO\n");
If (fork() '=0) {
printf("L1\n");
If (fork() '=0) {
printf("L2\n");

}
}
printf("Bye\n");
}

LO LO
L1 Bye
Bye L1
Bye Bye
L2 Bye

Bye L2



Exercise: Forks and Feasible Schedules

* For each of the following programs, draw the process
graph and then determine which of the possible outputs

are feasible
void fork2(){ void fork3(){
printf("LO\n"); printf("LO\n");
If (fork() '=0) { If (fork() == 0) {
printf("L1\n"); printf("L1\n");
If (fork() '=0) { If (fork() == 0) {
printf("L2\n"); printf("L2\n");
} }
} }
printf("Bye\n"); printf("Bye\n");
} }
LO LO LO LO
L1 Bye Bye Bye
Bye L1 L1 L1
Bye Bye L2 Bye
L2 Bye Bye Bye

Bye L2 Bye L2



Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled



Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

Stopped



Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

wait, 1/O operation



Process Life Cycle

interrupt, yield

‘/—\

Runnable Running

scheduled

process or

/0 completion wait, 1/0 operation



.
Reaping Children

* Reaping
* Performed by parent on terminated child (using wait or waitpid)
« Parent is given exit status information
- Kernel then deletes zombie child process

int wait(int* child_status)
« Suspends current process until any one of its children terminates
* Return value is the pid of the child process that terminated

* If child_status != NULL, then the integer it points to will be setto a
value that indicates reason the child terminated and the exit status



.
Reaping Children

* Reaping
* Performed by parent on terminated child (using wait or waitpid)
* Parent is given exit status information
* Kernel then deletes zombie child process

*int wait(int* child_status)
* Suspends current process until any one of its children terminates
* Return value is the pid of the child process that terminated

* If child_status != NULL, then the integer it points to will be set to a
value that indicates reason the child terminated and the exit status

*int waitpid(pid_t pid, int* child_status, int
opt)

* Suspends current process child with pid terminates



walt Example

void fork6() {

int child_status;

HC exit

if (fork() == 0) { printf
printf("HC: hello from child\n");

exit(0);

} else { ;72
printf("HP: hello from parent\n"); de A"'E A'# Q‘
wait(&child _status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

}
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC



Reaping Children

* What if parent doesn’t reap?
* If any parent terminates without reaping a child, then the orphaned
child will be reaped by 1nit process (pid == 1)
* S0, only need explicit reaping in long-running processes
* e.g., shells and servers



Process Life Cycle

interrupt, yield

‘/-\

Runnable Running

scheduled

process or

/0 completion wait, 1/0 operation



Process Life Cycle

Terminated

interrupt, yield

‘/-\

Runnable

return from main,
exit, terminated

Running
scheduled

process or

/0 completion wait, 1/0 operation



Terminating Processes

* Process becomes terminated for one of three reasons:
* Returning from the mailn routine
- Calling the exit function
* Recelving a signal whose default action is to terminate



Terminating Processes

* Process becomes terminated for one of three reasons:
* Returning from the mailn routine
- Calling the exit function
* Recelving a signal whose default action is to terminate

*volid exit (int status)
* Terminates with an exit status of status
* Convention: normal return status is O, nonzero on error

* Another way to explicitly set the exit status is to return an integer value
from the main routine

* exit is called once but never returns.
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